
Programming

a PIC24 in

MPLAB X

I

Table of Contents

Making a Project and Navigating the IDE 1

How Programming a PIC24 Differs from Writing Code in C++ 4

Basics of a PIC24 Program 6

General Good Practices 8

How to Setup Basic PIC24 Connections 10

Configuring and Use the Debugging Tool 12

Configuring Pins as Digital I/O Pins without Change Interrupts 14

Code Example 16

Configuring Pins as Digital I/O Pins with Change Interrupts 17

Code Example 20

About the Analog to Digital Converter 22

Configuring the Analog to Digital Converter without Threshold Detect 24

Code Example 28

Configuring the Analog to Digital Converter with Threshold Detect 30

Code Example 38

Configuring a Timer and Timer Interrupt 41

Code Example 44

Configuring a PWM Signal and Counter Interrupt without Fault Inputs 46

Code Example 48

Configuring a PWM Signal and Counter Interrupt with Fault Inputs 50

Code Example 55

Configuring Input Capture and Input Capture Interrupts 57

Code Example 62

Code Example – HC-SR04 Ultrasonic Range Finder 64

II

1

Making a Project and Navigating the IDE

Initial Screen

Upon startup you should see the startup

screen as shown above that has shortcuts to

websites and functions of the IDE. From this

start page we will either make or continue a

previous project with the buttons in the top left

corner. The manila folder with a plus on it

creates a new project and the blue folder with a

manila folder coming out opens a project.

Creating a Project

Upon clicking the new project button,

we are presented with the following popup:

From this point we select a standalone project

and hit next at the bottom of the screen. The

next window we see looks like the following:

2

Here we need to define what device we are

programming to. In the family drop down

select 16-bit MCUs (PIC24) and in the device

dropdown select PIC24F16KA301. If you have

a PicKit3 plugged in you can select that under

the tool drop down or you can just skip that

section and hit next. The next menu looks like

the following:

This is VERY IMPORTANT. If you do not see

an XC16 compiler option then you must go and

download one from online. This compiler is in

charge of converting your code into

instructions for the PIC24. A google search

should provide you the options needed to get

one. Select the most recent XC16 compiler and

hit next. The final screen looks like the

following:

In this menu you choose where your project

will be saved and what the name of the project

will be. Do not use special characters or spaces

in the name to avoid compiler issues. When

done hit finish and your project should open.

Navigating the IDE

When done the front screen will have

some new side panels. The top left panel is the

project view and shows you the files that make

up your project. These will include source and

header files. It looks like the following:

The bottom panel is a summary of project

resources and settings. It looks like the

following:

3

The top tool bar contains the commands to

compile, build, program, and debug your code

with your PIC24. For more details on these

features refer to the sections on the basics of a

PIC24 program and the set up for the

debugging tool.

4

How Programming a PIC24 Differs from
Writing Code in C++

Variable Limitations

If you have had previous experience

programming in C++ you are probably

accustomed to the wide varieties of variables

and STL containers that are available on PC

devices. While most of these capabilities carry

over to the PIC24 most of them are not

inherent and must be included as header files.

However, it is important to note that the PIC24

does not have much memory. This means that

as a general rule of thumb dynamic memory

allocation should be avoided as much as

possible. Another consideration is that global

variables should only be used if they are used

frequently. A good rule of thumb for global

variable use is that if it will be used in more

than one function repeatedly then it is ok to

have. While in most cases these will hardly be

problems for robots and small projects, any

attempt to be fancy should keep in mind these

limitations.

Registers

Unlike most code in C++, programming

a PIC24 requires you to access and write

specific bytes of data to storage areas called

registers. These registers and what each byte of

data controls are all explained in the datasheet.

When programming a register, you will have

to use special calls to the specific register you

want to change and then specific bits you want

to write. Some registers have shortcuts to

specific bits as well. Further on in this

document we will give example code that will

show you how to perform common tasks on

the PIC24 with their associated registers.

No Delay or Wait Function

The PIC24 has no in-built wait function.

Often times in coding in C++ or coding an

Arduino we are used to being able to tell the

device to wait before doing something else.

This is still possible on the PIC24 but requires

the programmer to make use of a timer and

timer interrupt as well as a global variable

which will get set to a specific value when to

timer is done to let the code know to continue.

See page 41 for more information on how to

use timers and timer interrupts.

Interrupts

Putting a while loop in your main loop

is a common way to loop through repeated

actions and respond to inputs in normal code.

This leads to problems when programming a

microcontroller however because we are

dealing with peripheral devices and sensors

which interact with the world around them. A

while loop would keep the code stuck until its

conditions are met and this could lead to us not

responding to potential hazards for our device

or more important tasks that arise. While loops

also do not have a sense of time and this can

lead to problems when dealing with timers,

PWM signals, or time sensitive inputs. The use

of interrupts allows the PIC24 to respond in the

moment to different inputs and cleans up the

main loop significantly. Interrupts are code

that stops the main loop temporarily and runs

code in response to a specific event. This could

be a timer reaching a certain time, a PWM

signal counting a certain amount, a digital

input going high, etc. These interrupts have to

5

be enabled but make coding much more fluid

and real time than just writing code. In a

practical application this allows you to respond

to sensors on your system quickly and

correctly. It also helps to prevent code from

interrupting each other as interrupts enter a

queue with priorities.

Voltages vs. Numbers

When using the PIC24 most of your

sensors will not output a simple digital high or

low. Often times you deal with voltage values

that must be converted to digital numbers. We

discuss this further on pages 24 and 31 but the

complication of programming a PIC24 is that

your inputs are no clean numbers like 2V or

1.25V but instead are converted into values like

900 and 2400.

6

Basics of a PIC24 Program

Making a Main File

After loading your project your side

panel should look like this:

Currently we have no files within our project.

To remedy this, we need to make a main.c file.

If we right click on the Source Files folder we

get the following options:

Selecting the mainXC16.c option we can

rename the file to just main.c and hit finish.

From there we should have a file open that

looks like the following image:

It already has the xc.h header included so that

we can program the registers on our PIC24.

Choosing an Oscillator

Frequency

An important thing about programming

a PIC24 is the frequency of your oscillator. The

frequency of your oscillator divided by two is

called your cycle frequency. Each iteration of

the cycle frequency runs one command of

code. Each line of code can translate to

different amounts of commands but often it is

about six commands per line. When

programming timers or PWM signals this is

much more important since you are limited in

the PIC24’s memory to how many cycles you

can count and thus how long a timer or PWM

period can be. The options you have are as

follows:

FRC – This is the internal 8 MHz

oscillator

FRCDIV – This refers to the internal 8

MHz oscillator with a postscaler

divider. A postscaler divider means the

frequency of the oscillator will be

reduced.

LPRC – This is the 31.25 kHz Low-

Power internal oscillator

LPFRC – This is the 500 kHz Low Power

internal oscillator with a postscaler

divider.

7

To set this up in the code simply place the

following line before your main loop:

#pragma config FNOSC = /**/;

In place of the /**/ simply place one of the 4

options from above. If you chose any of the

clock options with a postscaler divider you will

need an additional line of code. While the clock

can only be defined once out of the main loop.

This line defines the divider and can be

changed whenever in the code. This is useful if

you need to change clock signals to

temporarily be able to make a PWM signal

work or get a timer to wait for a certain period

of time. For the divider use the following line:

_RCDIV = 0bXXX;

Where the XXX is you must choose one of the

following values when you are using the

FRCDIV 8MHz oscillator:

111 = 31.25 kHz (divide-by-256)

110 = 125 kHz (divide-by-64)

101 = 250 kHz (divide-by-32)

100 = 500 kHz (divide-by-16)

011 = 1 MHz (divide-by-8)

010 = 2 MHz (divide-by-4)

001 = 4 MHz (divide-by-2) (default)

000 = 8 MHz (divide-by-1)

When you are using the LPFRC 500 kHz

oscillator

111 = 1.95 kHz (divide-by-256)

110 = 7.81 kHz (divide-by-64)

101 = 15.62 kHz (divide-by-32)

100 = 31.25 kHz (divide-by-16)

011 = 62.5 kHz (divide-by-8)

010 = 125 kHz (divide-by-4)

001 = 250 kHz (divide-by-2) (default)

000 = 500 kHz (divide-by-1)

After setting the oscillator for your PIC24 your

code is now ready to be written.

Writing in the Main Loop

The main loop will loop repeatedly after

it finishes all commands. While at times this

may be advantageous often we want it to run

once and loop only certain parts. To prevent

this from happening we just insert the

following code into our main loop at the end

before the return

while(1);

This is an infinite loop that has our main loop

idle while we may have things going on with

interrupts or other code. Now any code we

insert before this command will run once and

then the PIC24 will stay in that infinite loop

until it times out after a few minutes on

inaction or until we reset it.

8

General Good Practices

Global Variables Header

To keep your main.c file as clean and

neat as possible it is a good idea to make a

dedicated header file for your global variables.

To do so, right click in your project window on

the Header Files folder, select new, and then

select C Header File. Name your file something

obvious for another code reader and select

finish. Now include the file in your main.c file

with the following line of code:

#include “your_file_name.h”

In this file you can define all your global

variables and initialize them. Include this file

where you use these variables.

Interrupts Header

It is highly recommended you make a

dedicated header file for the code needed to

handle the interrupts when they occur. Make a

header file like before but name it interrupts.h

or ISRs.h. Include it in your main.c file and

write out all the code to handle interrupts in

this file. Use switch statements in your

handlers so you can make cases for different

functions or sections of code that use this

interrupt and need to behave differently.

Using Header Files for Other

Code

Often times you may write long

functions or work on code as a group. In these

times using header files to hold code that will

be used in main.c file but would make it much

harder to read is best. A good rule of thumb for

functions is that if it will take 10 or more lines,

place it in a separate header file. If you are

having each member of your group write their

own code make a header file for each person

and have them write their functions in that

header file. Make sure to include all your files

in your main.c file.

Comment Everything

PIC24 code is hard to read. Making

many comments to save your life and your

project in the inevitable future. Having more

comments is always better than having less.

Using Custom Definitions to

Improve Code Legibility and

Avoid Magic Numbers

PIC24 code is often nonintuitive to read.

We are setting registers and variables to many

different values and this can be hard to come

back to and review when we need to fix code.

To avoid this becoming an issue try using the

following line of code to help out:

#define /*register*/ /*new name*/

This assigns the register an alias of your choice.

As an example, if we had a photodiode on pin

3 we would have to call ADC1BUF1 to read its

value. With a custom definition, anywhere we

would type ADC1BUF1 to read the data of a

photodiode on pin 3, we could replace with

something like frontPhotodiode which is a lot

easier to understand and diagnose. Make sure

to place these definitions in your global

variables header file for ease of reading and to

keep your main.c file clean and clear. In

addition to improving your code’s readability,

custom definitions should be used to avoid

magic numbers. Magic numbers are repeatedly

used numbers that have a meaning to the

programmer but would be hard or impossible

to understand for another reader. As an

example, let’s say you have a PWM signal

9

whose frequency you change between 3 values

in your code. Instead of just writing these

numbers every time you could use a custom

definition like the following:

#define fiftyHz 4999

So that anywhere you would place 4999 you

can use fiftyHz instead. The compiler will

automatically make the substitutions for you

before downloading to the PIC24. This makes

your code much easier to read and can reduce

the number of variables you use if you are

smart about your definitions.

Clear All Pins at the Start of

your Code

The PIC24 requires all unused I/O pins

to be set to digital outputs set to low when not

in use. To ensure your code behaves how you

expect it to insert the following lines of code at

the beginning of your main loop.

ANSA = 0;

ANSB = 0;

TRISA = 0;

TRISB = 0;

LATA = 0;

LATB = 0;

This will ensure every pin is a digital output

set to low until you reassign them later on in

your code.

Create Code Templates

It is extremely helpful if you take the

time to make code templates or template

functions that you can use later. A good way to

do this is to make a header file of functions that

you can copy and use in different projects.

Examples of functions that would be useful are

a function to setup the analog to digital

converter, a function to create a timer, a

function to setup a PWM signal, etc. If you add

plenty of comments to these functions it can

save you a tremendous amount of time when

you need to change or redo parts of your code.

Just make sure you call those functions in your

main loop so that the settings are actually

made in your PIC24.

10

How to Setup Basic PIC24 Connections

MCLR Pin

The MCLR pin is the master clear pin

for the PIC24. It must be held at a constant

high voltage for it to be inactive and the device

to run. This pin is pin 1 on the PIC24 and the

required circuit is as shown below:

VDD needs to be 3.3V, R1 is a 10 kΩ resistor,

R2 is a resistor between 100 Ω and 470 Ω, and

C1 is a .1μF capacitor.

VSS and VDD Pins

Pin 19 is the VSS pin and pin 20 is the

VDD pin. You will need to place a .1μF

capacitor between the two pins. This helps to

reduce any fluctuations in the power supply

and ensure the PIC24 outputs a consistent

power supply. The max current output on the

VDD pin is 250 mA. This is shared with all the

I/O ports which can only output 25mA each.

Be careful not to draw too much current or you

risk burning out your PIC24.

Programming Pins

Pins 9 and 10 are your programming

pins. It is VERY IMPORTANT that you remove

any sensors or other connections before

connecting your PICKit 3 to prevent

interference. After programming the PIC24

you can then use these pins freely. The

programming pins can be changed if needed

but before doing so, make sure to review the

datasheet to see what pins have what

capabilities. These programming pin options

are as follows:

PGx3 = Pins 9 and 10 (default)

PGx2 = Pins 3 and 2

PGx1 = Pins 4 and 5

The options are listed in the order that the pins

will be connected to the PICKit 3 programmer.

The first pin listed is the PGD pin and the

second pin is the PGC pin. On the PIC24 PCB

available at the PSC pins 9 and 10 are

preconnected to the PICKit 3 connection on

board. If you intend on changing the pins you

should not use the PICKit 3 connection on that

PCB and instead use individual wires going to

the proper connections from the PICKit 3. To

change the programming pins, use the

following optional line of code in your main.c

file outside of the main loop:

#pragma config ICS = XXXX

Where XXXX is replaced by one of the options

above.

11

Wiring the PICKit 3

To wire the PICKit 3 follow this diagram

and the paragraph that follows:

MCLR connects to pin 1, VDD pin 20, VSS to

pin 19, PGD to pin 9, and PGC to pin 10. If you

changed the programming pins make sure you

refer to the previous paragraph to ensure that

your PGD and PGC pins are properly

connected.

Powering the PIC24 from the

PICKit 3

If you do not have a voltage regulator

circuit or any other power source hooked up to

your PIC24 you can use the PICKit 3 to provide

the power you need to run your PIC24. To do

this, got to file>>project properties and in the

menu that pops up select the PICKit 3 on the

side bar. Then at the top drop-down menu

select Power and set the voltage level to 3.25V.

Then check the box that says power target

circuit from the PICKit 3. If you have a voltage

regulator circuit attached you should turn this

option off since the PICKit 3 will not be able to

supply enough power for your circuit in that

case. Use the voltage regulator circuit to get the

external power down to 3.3V instead.

12

How to Configure and Use the
Debugging Tool

Programming Pins

Refer to the section on these pins on

page 10 to ensure your programming pins are

properly selected. Make sure even if you don’t

change pins to include the following line of

code outside your main loop:

#pragma config ICS = PGx3

So that the default pins 9 and 10 are designated

as the programming and debugging pins. After

including that line of code and wiring the

PICKit 3 to its proper connections you are now

ready to use the debugging tool.

Programming the PIC24 for

Debugging

At the top of the MPLAB X window you

should see the following icon:

This icon programs your PIC24 and opens the

Debugging tool. Upon programming your

PIC24 you should see the following window

open up at the bottom of your screen:

The output tab is your standard project

warnings. The Breakpoints tab refers to points

that you would like the code to pause at. We

will talk about these further on. The Call Stack

tab shows the current functions that have been

called at this point in the code. The Variables

tab contains information on both watches you

set and local variables.

Setting and Using

Breakpoints

Breakpoints are generally used when

you want to verify that a value is met at a

certain pint in the code, or to verify that a

register is set properly when you arrive at a

part of the code. To set a breakpoint. Find a

line of code of code you would like to stop at.

Now go to that line and click the number of

that line. You should see the following:

This is a visual indicator of a breakpoint. In the

bottom left hand of your screen in the

dashboard you should see the following as

well:

This tells you how many breakpoints you have

available for use with your debugging tool.

The PICKit 3 supports three breakpoints.

However, it is important to note that using all

three will result in the inability to reset the

PIC24 programmatically as well as other

features. If you run your debugged code and

reach your breakpoint you should see the two

things occur. First the screen should show a

green line like this:

13

This is indicative of where the code is stopped

at. The other thing you should see is this at the

top:

This shows you the code is paused and you

have some options of how to proceed. The

green arrow means continue. The blue cycle

means reset. And the rest stop means end

debugging. The other arrows are used to in

order: step over the current step, step into the

code, step out of the code, run to cursor, set pc

at cursor, and focus cursor at pc. These tools

help you to navigate code more slowly. While

paused you can view variables and the call

stack and make sure everything is running the

way it should

Setting and Using Variable

Watches

Whenever you pause the code with the

pause button at the top of the screen or you hit

a breakpoint. The code will update the variable

tab with a snapshot of any local variables at

that point in the code and a snapshot of any

watches you have set. Watches can be set to

view global variables or registers in the PIC24.

To set a watch go to the variables tab and click

on the diamond with a green plus in the

corner. You should get a window that looks

like the following:

In this window select global symbols for global

variables or SFR’s for registers. Search with the

bar at the top or scroll till you find what you

need and hit ok. Now you should see you

watch in the variables tab. To delete it right

click on it and select delete. To change what

information you see, right click on the headers

and select the information you’re interested in

and a column will appear. Now whenever you

pause the code these will be updated.

14

Configuring Pins as Digital I/O Pins
without Change Interrupts

PORTS

The PIC24 consists of two ports. Ports

are groups of pins that are tied to a register for

data. These ports on the PIC24 are ports A and

B. Referring to the pin diagram on Page II of

this document you can see which pins belong

to what port and what pin number they are by

looking for an RX## symbol on the diagram.

The X represents what port the pin belongs to

and the ## refers to what bit in the registers

below the pin corresponds to.

ANSX Registers

The ANSX registers are in charge of

telling the PIC24 if a pin is an analog or digital

pin. Only 12 pins on the PIC24 are analog

enabled pins and require this line of code.

These are pins 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, and

18. To set them as digital pins you must use the

following line of code for each pin you want to

use:

_ANSX## = 0;

Where X refers to the port that the pin belongs

to and ## refers to the corresponding bit in

that port.

TRISX Registers

The TRISX registers are in charge of

defining whether a pin a digital input or

output pin. To set each pin you must use the

following line of code for each pin you want to

use:

_TRISX## = Y;

Where X refers to the port of the pin and the

refers to the corresponding bit in that

register. Replace the Y with a 0 for output and

1 for input.

LATX Registers

The LATX Registers control the output of the

pins. Use the following command to set a

digital output to high for each pin you want to

set:

_LATX## = 1;

Where X is the pins port and ## is the bit in

that port.

Reading from a Digital Pin

To read from a pin we need to read

from the PORTX register. As an example, if we

wanted to read a digital input from pin 6

which is RB2 and set a variable equal to its

value I would use the following line of code:

int var = PORTBbits.RB2;

If I were calling a pin from port A I would

have to make sure to change PORTBbits to

PORTAbits and then change the ending to the

corresponding pins.

Max Voltage Input on any

Digital Pin

The max voltage on any digital pin is

3.6V. Exceeding this voltage can lead to

potential failure of your PIC24. Verify inputs

with a multimeter or voltage regulator before

inputting them to the PIC24.

Max Current Out on any

Digital Pin

15

The current output limit for the PIC24 is

25mA. Exceeding this current draw can lead to

potential failure of your PIC24.

16

Code Example - Configuring Digital I/O
Pins without Change Interrupts

/*

* File: main.c

* Author: Spencer Mosley

* Created on May 31, 2022

* Description: In this code I set pin 2 as a digital output and pin 16 as a digital input

* This document is provided as a reference material

*/

#include "xc.h"

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

/*pin 2 is RA0*/

/*pin 16 is RB13*/

_RCDIV = 0b100; // sets a 16 post scaler

/*Reset All Registers We will be Using*/

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Pins 2 and 3 as Digital Outputs*/

_ANSA0 = 0; //sets pin 2 as a digital pin

_TRISA0 = 0; //sets pin 2 as digital output

_LATA0 = 1; //sets pin 2 output to high

/*Set Pin 16 as a Digital Input*/

_ANSB13 = 0; //sets pin 16 as a digital pin

_TRISB13 = 1; //sets pin 16 as a digital input

/*Keep the Code Running as is*/

while(1);

return 0;

}

17

Configuring Pins as Digital I/O Pins with
Change Interrupts

PORTS

The PIC24 consists of two ports. Ports

are groups of pins that are tied to a register for

data. These ports on the PIC24 are ports A and

B. Referring to the pin diagram on Page II of

this document you can see which pins belong

to what port and what pin number they are by

looking for an RX## symbol on the diagram.

The X represents what port the pin belongs to

and the ## refers to what bit in that register the

pin corresponds to.

ANSX Registers

The ANSX registers are in charge of

telling the PIC24 if a pin is an analog or digital

pin. Only 12 pins on the PIC24 are analog

enabled pins and require this line of code.

These are pins 2, 3, 4, 5, 6, 7, 8, 9, 15, 16, 17, and

18. To set them as digital pins you must use the

following line of code for each pin you want to

use:

_ANSX## = 0;

Where X refers to the port that the pin belongs

to and ## refers to the corresponding bit in

that port.

TRISX Registers

The TRISX registers are in charge of

defining whether a pin a digital input or

output pin. To set each pin you must use the

following line of code for each pin you want to

use:

_TRISX## = Y;

Where X refers to the port the pin belongs to

and the ## refers to the corresponding bit in

that register. Replace the Y with a 0 for output

and 1 for input.

LATX Registers

The LATX Registers control the output

of the pins. Use the following command to set

a digital output to high for each pin you want

to set:

_LATX## = 1;

Where X is the pins port and ## is the bit in

that port.

Reading from a Digital Pin

To read from a pin we need to read

from the PORTX register. As an example, if we

wanted to read a digital input from pin 6

which is RB2 and set a variable equal to its

value I would use the following line of code:

int var = PORTBbits.RB2;

If I were calling a pin from port A I would

have to make sure to change PORTBbits to

PORTAbits and then change the ending to the

corresponding pins.

Max Voltage Input on any

Digital Pin

The max voltage on any digital pin is

3.6V. Exceeding this voltage can lead to

potential failure of your PIC24. Verify inputs

with a multimeter or voltage regulator before

inputting them to the PIC24.

Max Current Out on any

Digital Pin

18

The current output limit for the PIC24 is

25mA. Exceeding this current draw can lead to

potential failure of your PIC24. This is also the

max current out for a pin which has a pull up

resistor enabled for its change interrupt

Change Interrupts

The PIC24 has the capability of

detecting when a digital input pin changes

state. This is great for responding to a button

being pressed, a switch being thrown, or a

digital sensor going high. Each of the digital

I/O pins has a built-in pull up and pull-down

resistor that can be enabled to eliminate the

need for an external resistor. In your interrupt

handler you will need to write code to handle

changes from low to high AND from high to

low. You can do this by checking what the

value of the pin is, high or low, to respond

accordingly. It is VERY IMPORTANT to note

that the change interrupt is shared between all

pins so you will need to check each pin in your

handler to find which pin had changed

Enabling the Change

Interrupt on Pins

Each I/O pin has its port number RBXX

but it also has its own change interrupt

number CNXX that corresponds to it. Look at

the diagram on page II of this document to find

the number for the pin you are configuring.

After finding that number use the following

line of code for each pin you want to enable the

change interrupt on that pin:

_CNYYIE =1;

Where YY is replaced with the number of the

pin you are configuring.

Optional: Pull-Up and Pull-

Down Resistors

Each of the pins that has a change

interrupt capability also has the ability to use

an internal pull-up or pull-down resistor to

eliminate the need for an external resistor. A

pull-up resistor keeps the voltage of the pin

high until the pin is connected to ground and a

pull-down resistor keeps the pin low until it is

connected to power. If your circuit calls for one

of these you could remove it and enable the

resistor with one of these lines of code:

_CNXPDE = 1;

or

_CNXPUE = 1

Where X is the CNX number of the pin you are

configuring. It is important to note that only

one of these may be enabled at a time so make

sure you do not enable both to avoid errors or

hurting the PIC24. Use these lines of code for

each pin you are configuring.

Configuring the Change

Interrupt

After defining which pins will use the

change interrupt we need to configure how the

change interrupt should work. Use the

following lines of code to do this:

_CNIP = XX;

_CNIF = 0;

_CNIE = 1;

Where XX represents the priority of the

interrupt and needs a value between 1 and 7. 1

being least important 7 being most important.

This only matters if interrupts will potentially

occur at the same time and one has to be done

before the other. I always set them as 4. The

second line clears the interrupt flag. When we

handle the interrupt, we must always clear the

flag so that the code can continue running

normally after the interrupt handler or we will

be infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

19

you are not concerned with how the pins

change.

Handling the Change

Interrupt

When the interrupt is called we need to

make a handler that clears the interrupt flag

and reacts to the interrupt. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__((interrupt, no_auto_psv))

_CNInterrupt(void){

_CNIF = 0;

/*your code here*/

}

The function name must be as given above for

the code to work properly. The first line clears

the interrupt flag and must always be

included. The rest is up to you. You should

check the values of pins here and respond

according to your design.

20

Code Example - Configuring Digital I/O
Pins with Change Interrupts

/*

* File: main.c

* Author: Spencer Mosley

* Created on May 31, 2022

* Description: In this code I set pins 2 and 4 as digital inputs and pins 3 and 5 as a

* digital inputs with change interrupts. I am only concerned in pins 3 and 5 go high*/

* This document is provided as a reference material

*/

#include "xc.h"

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

void __attribute__((interrupt, no_auto_psv)) _CNInterrupt(void){

_CNIF = 0; //clears interrupt flag

if(PORTAbits.RA1 == 1){

/*react to pin 3 going high here*/

}

if(PORTBbits.RB1 == 1){

/*react to pin 5 going high here*/

}

}

main(void) {

/*pin 2 is RA0*/

/*pin 3 is RA1 and CN3*/

/*pin 4 is RB0*/

/*pin 5 is RB1 and CN5*/

_RCDIV = 0b100; // sets a 16 post scaler

/*Reset All Registers We will be Using*/

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Pins 2 and 4 as Digital Outputs*/

_ANSA0 = 0; //sets pin 2 as a digital pin

_ANSB0 = 0; //sets pin 4 as a digital pin

_TRISA0 = 0; //sets pin 2 as digital output

21

_TRISB0 = 0; //sets pin 4 as digital output

_LATA0 = 1; //sets pin 2 output to high

_LATB0 = 1; //sets pin 4 output to high

/*Set Pins 3 and 5 as Digital Inputs*/

_ANSA1 = 0; //sets pin 3 as a digital pin

_ANSB1 = 0; //sets pin 5 as a digital pin

_TRISA1 = 1; //sets pin 3 as a digital input

_TRISB1 = 1; //sets pin 5 as a digital input

/*Enable Change Interrupt on Pins 3 and 5*/

_CN3IE = 1; //enables change interrupt for pin 3

_CN5IE = 1; //enables change interrupt for pin 5

/*Enable Internal Pull-Down Resistors*/

_CN3PDE = 1;

_CN5PDE = 1;

/*Configure the Change Interrupt*/

_CNIP = 4; //sets change interrupt priority to 4;

_CNIF = 0; //clears the change interrupt flag

_CNIE = 1; //enables the change interrupt

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

22

About the Analog to Digital Converter
with Threshold Detect

Registers

There is a total of 11 registers that are

used to configure the analog to digital

converter. 2 of these are not used on the PIC24

and 2 of them are only used if you intend to

measure capacitance on the analog to digital

converter. The other 7 are used to configure the

analog to digital converter, the pins to check,

and the threshold detection feature.

Max Voltage Input on the Pins

The maximum voltage you can input on any

analog pin is 3.6V. Exceeding this can

potentially cause PIC24 failure so take care to

check all signals you intend to read with a

multimeter or oscilloscope before inputting

them into the PIC24.

Resolution

When using the analog to digital

converter it is important to remember how

precise your measurements can be. The PIC24

has two operating modes for the analog to

digital converter. These are the 10-bit and 12-

bit operating modes. Assuming you will be

using the PIC24 operating 3.3V as the voltage

reference these are the smallest measurements

you can get in each operating mode

10-bits:

3.3

210 − 1
= .0032V

12-bits:

3.3

212 − 1
= .00081V

You can also use a reference voltage with pin 2

being the positive input and pin 3 being the

negative input. The reference voltage

maximum is 3.3V and its minimum is 1.7V. If

you use the smallest voltage reference, the

smallest voltage measurement you could have

would be the following:

10-bits:

1.7

210 − 1
= .0017V

12-bits:

1.7

212 − 1
= .00042V

However, if you do this, anything above 1.7V

will be read as 1.7V. The analog to digital

converter also does not output the voltage as a

decimal value. Instead it outputs it as a

multiple of the values given above. In the 10-

bit operating mode your voltage will be

represented as a value between 0 and 1023. In

the 12-bit operating mode you value will be

represented as a value between 0 and 4095. To

calculate what the value you should expect to

receive, given you know what voltage should

be inputted, use the following equation:

Your Voltage

3.3V
× (1023 or 4095)

The value you multiply by depends on your bit

operation.

Analog to Digital Converter

Clock Cycle

The analog to digital converter has its

own internal counter that is responsible for

creating a new frequency for the analog to

digital converter. This frequency must have a

minimum period of 600nS however for the

sampling time a minimum of 750nSis required.

The largest period that the analog to digital

23

converter can have is 64 times the oscillator

period. Alternatively, you can use one of the 5

timers on the PIC24 to act as the timing for the

analog to digital converter. This will have to be

done if you plan on using the threshold detect

feature.

Analog to Digital Converter

Interrupt Rate

The analog to digital converter throws

an interrupt after a set number of samples have

been taken. You will need to make sure that

this interrupt occurs after you have sampled all

of your pins. If it does not you will not see

what happens on certain pins because the scan

will reset after each interrupt.

Threshold Detect

The analog to digital converter has a

built-in feature for detecting when a pin rises

above a certain value, falls below a certain

value, is within a certain window of values, or

is outside a certain window of values. This

feature can throw an interrupt if desired so

that you can address these changes or can

make it so that you don’t need to store the

value the sensor is at or run any comparison

logic on your pins and rather just look at what

pins tripped.

24

Configuring the Analog to Digital
Converter without Threshold Detect

Clear All Converter Registers

To start you need to clear the registers

so you can have proper settings for your

analog to digital converter. To do this use the

following lines of code to clear the relevant

registers:

AD1CON1 = 0;

AD1CON2 = 0;

AD1CON3 = 0;

AD1CON5 = 0;

AD1CSSL = 0;

AD1CSSH = 0;

Setting the Pins for Analog

Use

We need to tell the pins we are going to

use that they are analog inputs. To do this we

use the following lines of code for each pin we

want to use:

_ANSYXX = 1;

_TRISYXX = 1;

Where Y is the letter corresponding to the port

of the pin we use. The XX refers to the bit in

that port. Look at page II of this document for

the pin out diagram and find the RYXX value

of the pin you want to use for that information.

Setting Voltage and Ground

References

The analog to digital converter needs to

know with regards to what voltage and

ground it should base its conversion on. Refer

to the Resolution section in About the Analog

to Digital Converter with Threshold Detect to

understand what your options are. To set the

positive voltage choose from the following

options and use the following line of code:

11 = 4 * Internal VBG

10 = 2 * Internal VBG

01 = External VREF+

00 = AVDD

_PVCFG = 0bXX

Where the XX is exchanged for the option you

choose above. The VBG can be ignored since it

falls outside the scope of the projects you will

do. To set the ground reference choose from

the following options and use the following

line of code:

1 = External VREF-

0 = AVSS

_NVCFG = X;

Where X is exchanged for the option you chose

above.

Set the Analog to Digital

Conversion Timing

When not using the threshold detect

you can have the analog to digital converter

take care of its own timing. Simply use the

following line of code:

_SSRC = 0b0111;

This means the converter automatically

converts after finishing sampling.

Choose Bit Mode

You need to decide if you would like to

use the 10-bit or 12-bit resolution mode. Refer

to the Resolution section in About the Analog

to Digital Converter with Threshold Detect to

25

understand what your options are. Use the

following line of code:

_MODE12 = X;

Where X is 0 for 10-bit mode or 1 for 12-bit

mode.

Choose Output Format

The PIC24 has 4 output formatting

options you can choose from. They are as

follows:

11 = Fractional result, signed, left-

justified

10 = Absolute fractional result,

unsigned, left-justified

01 = Decimal result, signed, right-

justified

00 = Absolute decimal result, unsigned,

right-justified

If you use the signed fractional result you will

get a value between -0.500 and .500. The

inverse of your reference voltage is equal to -

.500 and your reference voltage is .500. To find

what voltage you are at you would need to

multiply that number by your reference

voltage. An unsigned fractional result will be

represented as a value between 0 and 1. This is

in absolute form so a negative voltage reading

would still be read as simply its value. To find

what voltage you are at take the value and

multiply that by your reference voltage. A

signed decimal result would give you a value

between -2048 and 2047 for 12-bit mode or -512

and 511 in 10-bit mode. To find what voltage

you are at take the value and divide it by 2048

for 12-bit mode and 512 for 10-bit mode. Then

multiply that value by your reference voltage.

An unsigned decimal result would be a value

between 0 and 4095 for 12-bit mode and 0 and

1023 for 10-bit mode. Take the value and

divide it by 4095 in 12-bit mode or 1023 in 10-

bit mode and multiply the result by your

reference voltage. It is highly unlikely that you

will encounter negative voltages in your

readings and since your PIC24 does not care

for the difference between and integer and a

float it is recommended to use the unsigned

integer results for ease of programming. Some

math will be required on you part to

understand what you are looking for or what

the output means but it will be easier to deal

with in the future rather than fractions. To set

this use the following line of code:

_FORM = 0bXX:

Where XX is replaced by the value

corresponding to the option you decide to use.

Remember that if you choose a fractional form

any attempt to store in a variable must use a

float variable.

Auto Sampling

Auto sampling means after the

converter is done converting the last value it

read, it will begin reading another value. If you

are sampling from multiple pins you should

use this option. If you are only reading from

one analog pin you should still set this. If you

want to sample on demand read the data sheet

for more information on how that is done. Use

the following line of code to set it:

_ASAM = X;

Where X = 1 for enabled and 0 for disabled;

Setting Output Location

There are options for where to output

your converted data but it is HIGHLY

recommended you set the following option to

enabled. The reason for this is that it prevents

data from being overwritten and simplifies

accessing your data. If you desire to do

otherwise this is at your own discretion and

will require some through reading of the data

sheet starting at page 210. Use the following

line of code:

_BUFREGEN = 1;

26

Change the value to 0 to disable this at your

own risk. The following only applies to if this

option is enabled. To read the value you must

access it with this value:

ADC1BUFXX

Where XX represents the ANXX value that

corresponds to the pin you are reading from.

For example, if you are reading from pin 2 it

corresponds to AN0, see page II of this

document for a diagram of the pinout, and I

would access its converted value with

ADC1BUF0. I could set a variable equal to that

value or you can compare that value in a

comparison statement.

Auto Scan Inputs

In most cases you should have the

PIC24 iterate through the analog pins. If you

do not iterate through the pins you will be in

charge of telling the PIC24 which pin it needs

to look at for each sample iteration. Look at the

datasheet for more information on how to do

that. To turn on the auto scanning use the

following line of code:

_CSCNA = 1;

Change the 1 to 0 to disable auto scanning. If

you are auto scanning it is VERY IMPORTANT

that you follow the next step to tell the PIC24

what pins should be included in the auto scan.

Defining Which Pins to Auto

Scan

The PIC24 does not look at the ANSX

registers to determine which pins it should

scan when auto scanning. Instead it looks at

the ADC1CSSL register. Having reset the

register, it will not scan any pin currently. To

tell it which pins to scan you must use the

following line of code for each pin you want to

scan:

_CSSXX = 1;

Where XX represents the ANXX number of the

pin. Look at the pinout on page II of this

document next to the pin you intend to use for

its ANXX number.

Defining the Interrupt Rate

The analog to digital converter throws

an interrupt after it has converted a certain

number of samples. With the auto scan enabled

it is VERY IMPORTANT that you properly

change this setting. Even without the interrupt

enabled this must be set. Take the number of

pins you are scanning, subtract one, and

convert that number to binary. That is the

input for the interrupt rate you will want to

use. Set the interrupt rate with the following

line of code:

_SMPI = 0bXXXXX

Where XXXXX is the number you calculated.

You need to add the leading zeros so that it is

five digits long. For example, if I was

converting eight pins, I would need to use

binary seven which is 111. I would then add

the two leading zeros to get 00111 which is

what I would use as my setting.

Defining the Analog to

Digital Converter Clock

Cycle

You must always set the conversion

clock setting. To do this you must choose from

the following options and use the following

line of code:

11111111-01000000 = Reserved

00111111 = 64·TCY = TAD

•

00000001 = 2·TCY = TAD

00000000 = TCY = TAD

_ADCS = 0bXXXXXXXX;

Where TCY is your chosen Oscillator period, or

one divided by your Oscillator Frequency, and

27

TAD is your converter period. This period

must be longer than 600nS for converting.

Replace XXXXXXXX with your chosen option.

Defining the Auto Sample

Time

After setting the converter clock you

need to set how long the converter should

sample the pin value for. This must be longer

than 750nS. To set it choose one of the

following options and use the following line of

code:

11111 = 31 TAD

•

•

•

00001 = 1 TAD

00000 = 0 TAD

_SAMC = 0bXXXXX;

Where XXXXX is replaced by the option you

chose and TAD is the converter clock cycle.

Configuring the Analog to

Digital Converter Interrupt

This step is optional but the interrupt

rate must still be set even if this is not used.

After sampling all your pins, you can throw an

interrupt to pause your main loop and run

specific code in response to that data. To do

this we need the following three lines of code:

_AD1IP = X;

_AD1IF = 0;

_AD1IE = 1;

Where X represents the priority of the interrupt

and needs a value between 1 and 7. 1 being

least important 7 being most important. This

only matters if interrupts will potentially occur

at the same time and one has to be done before

the other. I always set them as 4. The _ADC1IF

command refers to the interrupt flag. When we

handle the interrupt, we must clear the flag so

that the code can continue running normally

after the interrupt handler or we will be

infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

you are not concerned with responding to the

data acquisition or thresholds.

Handling the Analog to

Digital Converter Interrupt

If we have enabled the interrupt we

must handle that interrupt. To do so we must

create a handler in our code. This can be done

in the main.c file or if you are following the

good practices guidelines in your interrupts

header file. The handler function is written as

follows:

void __attribute__ ((interrupt, no_auto_psv))

_ADC1Interrupt(void){

_AD1IF = 0;

/*your code here*/

}

The handler must be written with that name in

order for the PIC24 to properly function. The

interrupt flag line must also always be at the

top of the interrupt to clear the flag.

Enabling the Analog to

Digital Converter

The last thing to do is enable the analog

to digital converter. It can be turned on and off

as needed and is all done with the following

line of code:

_ADON = X;

Where X is 1 for on and 0 for off.

28

Code Example – Configuring the Analog
to Digital Converter without Threshold

Detect
/*

* File: main.c

* Author: Spencer Mosley

* Created on June 2, 2022

* Description: In this code I set pins 17 and 18 as analog inputs. I also configure the A/D

* converter without threshold detect and an interrupt for when the values are available.

* This document is provided as a reference material

*/

#include "xc.h"

void __attribute__((interrupt, no_auto_psv)) _ADC1Interrupt(void){

_AD1IF = 0; //clears interrupt flag

 /*code would go here based on what I was doing*/

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

/*pin 17 is RB14 and AN10*/

/*pin 18 is RB15 and AN9*/

_RCDIV = 0b100; // sets a 16 post scaler

/*Reset All Registers We will be Using*/

AD1CON1 = 0;

AD1CON2 = 0;

AD1CON3 = 0;

AD1CON5 = 0;

AD1CSSL = 0;

AD1CSSH = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Pins we want to use as Analog Pins and Inputs*/

_ANSB14 = 1; //sets pin 17 as an analog pin

_ANSB15 = 1; //sets pin 18 as an analog pin

29

_TRISB14 = 1; //sets pin 17 as an input

_TRISB15 = 1; //sets pin 18 as an input

/*Set Positive and Negative Voltage References*/

_PVCFG = 0b00; //selects voltage reference

_NVCFG = 0; //selects ground reference

/*Set Conversion Timing*/

_SSRC = 0b0111; //sets the converter as managing its own time

/*Set Bit Mode*/

_MODE12 = 1; //sets converter to the 12-bit operating mode

/*Set Output Format*/

_FORM = 0b00; //sets converter to absolute decimal format

/*Set Auto Sampling*/

_ASAM = 1; //enables auto sampling

/*Set Output Location*/

_BUFREGEN = 1; //sets output to buffers corresponding to pins

/*Set Auto Scanning of Inputs*/

_CSCNA = 1; //auto scanning enabled

/*Define which Pins to Scan*/

_CSS10 = 1; //enables scanning of pin 17

_CSS9 = 1; //enables scanning of pin 18

/*Choose Interrupt Rate*/

//(2 – 1) in binary is 00001

_SMPI = 00001; // interrupts every other sample

/*Define the Analog to Digital Converter Clock Cycle*/

_ADCS = 0b00000000; //sets clock to be the same as the system clock

/*Define the Auto Sample Time*?

_SAMC = 0b00001; //sets the sample time to be one converter clock cycle

/*Configure the Analog to Digital Converter Interrupt*/

_AD1IP = 4; //sets interrupt priority to 4

_AD1IF = 0; //clears interrupt flag

_AD1IE = 1; //enables interrupt

/*Turn on Analog to Digital Converter*/

_ADON = 1; //turns analog to digital converter on

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

30

Configuring the Analog to Digital
Converter with Threshold Detect

Setting the Pins for Analog

Use

We need to tell the pins we are going to

use that they are analog inputs. To do this we

use the following lines of code for each pin we

want to use:

_ANSYXX = 1;

_TRISYXX = 1;

Where Y is the letter corresponding to the port

of the pin we use. The XX refers to the bit in

that port. Look at page II of this document for

the pin out diagram and find the RYXX value

of the pin you want to use for that information.

Clear All Converter Registers

To start you need to clear the registers

so you can have proper settings for your

analog to digital converter. To do this use the

following lines of code to clear the relevant

registers:

AD1CON1 = 0;

AD1CON2 = 0;

AD1CON3 = 0;

AD1CON5 = 0;

AD1CSSL = 0;

AD1CSSH = 0;

Setting Voltage and Ground

References

The analog to digital converter needs to

know with regards to what voltage and

ground it should base its conversion on. Refer

to the Resolution section in About the Analog

to Digital Converter with Threshold Detect to

understand what your options are. To set the

positive voltage choose from the following

options and use the following line of code:

11 = 4 * Internal VBG

10 = 2 * Internal VBG

01 = External VREF+

00 = AVDD

_PVCFG = 0bXX

Where the XX is exchanged for the option you

choose above. The VBG can be ignored since it

falls outside the scope of the projects you will

do. To set the ground reference choose from

the following options and use the following

line of code:

1 = External VREF-

0 = AVSS

_NVCFG = X;

Where X is exchanged for the option you chose

above.

Choose Bit Mode

You need to decide if you would like to

use the 10-bit or 12-bit resolution mode. Refer

to the Resolution section in About the Analog

to Digital Converter with Threshold Detect to

understand what your options are. Use the

following line of code:

_MODE12 = X;

Where X is 0 for 10-bit mode or 1 for 12-bit

mode.

Choose Output Format

The PIC24 has 4 output formatting

options you can choose from. They are as

follows:

11 = Fractional result, signed, left-

justified

31

10 = Absolute fractional result,

unsigned, left-justified

01 = Decimal result, signed, right-

justified

00 = Absolute decimal result, unsigned,

right-justified

If you use the signed fractional result you will

get a value between -0.500 and .500. The

inverse of your reference voltage is equal to -

.500 and your reference voltage is .500. To find

what voltage you are at you would need to

multiply that number by your reference

voltage. An unsigned fractional result will be

represented as a value between 0 and 1. This is

in absolute form so a negative voltage reading

would still be read as simply its value. To find

what voltage you are at take the value and

multiply that by your reference voltage. A

signed decimal result would give you a value

between -2048 and 2047 for 12-bit mode or -512

and 511 in 10-bit mode. To find what voltage

you are at take the value and divide it by 2048

for 12-bit mode and 512 for 10-bit mode. Then

multiply that value by your reference voltage.

An unsigned decimal result would be a value

between 0 and 4095 for 12-bit mode and 0 and

1023 for 10-bit mode. Take the value and

divide it by 4095 in 12-bit mode or 1023 in 10-

bit mode and multiply the result by your

reference voltage. It is highly unlikely that you

will encounter negative voltages in your

readings and since your PIC24 does not care

for the difference between and integer and a

float it is recommended to use the unsigned

integer results for ease of programming. Some

math will be required on you part to

understand what you are looking for or what

the output means but it will be easier to deal

with in the future rather than fractions. To set

this use the following line of code:

_FORM = 0bXX:

Where XX is replaced by the value

corresponding to the option you decide to use.

Remember that if you choose a fractional form

any attempt to store in a variable must use a

float variable.

Auto Sampling

Auto sampling means after the

converter is done converting the last value it

read, it will begin reading another value. If you

are sampling from multiple pins you should

use this option. If you are only reading from

one analog pin you should still set this. If you

want to sample on demand read the data sheet

for more information on how that is done. Use

the following line of code to set it:

_ASAM = X;

Where X = 1 for enabled and 0 for disabled;

Auto Scan Inputs

In most cases you should have the

PIC24 iterate through the analog pins. If you

do not iterate through the pins you will be in

charge of telling the PIC24 which pin it needs

to look at for each sample iteration. Look at the

datasheet for more information on how to do

that. To turn on the auto scanning use the

following line of code:

_CSCNA = 1;

Change the 1 to 0 to disable auto scanning. If

you are auto scanning it is VERY IMPORTANT

that you follow the next step to tell the PIC24

what pins should be included in the auto scan.

Defining Which Pins to Auto

Scan

The PIC24 does not look at the ANSX

registers to determine which pins it should

scan when auto scanning. Instead it looks at

the ADC1CSSL register. Having reset the

register, it will not scan any pin currently. To

tell it which pins to scan you must use the

32

following line of code for each pin you want to

scan:

_CSSXX = 1;

Where XX represents the ANXX number of the

pin. Look at the pinout on page II of this

document next to the pin you intend to use for

its ANXX number.

Defining the Interrupt Rate

The analog to digital converter throws

an interrupt after it has converted a certain

number of samples. With the auto scan enabled

it is VERY IMPORTANT that you properly

change this setting. Even without the interrupt

enabled this must be set. Take the number of

pins you are scanning, subtract one, and

convert that number to binary. That is the

input for the interrupt rate you will want to

use. Set the interrupt rate with the following

line of code:

_SMPI = 0bXXXXX

Where XXXXX is the number you calculated.

You need to add the leading zeros so that it is

five digits long. For example, if I was

converting eight pins, I would need to use

binary seven which is 111. I would then add

the two leading zeros to get 00111 which is

what I would use as my setting.

Defining the Analog to

Digital Converter Clock

Cycle

You must always set the conversion

clock setting. To do this you must choose from

the following options and use the following

line of code:

11111111-01000000 = Reserved

00111111 = 64·TCY = TAD

•

00000001 = 2·TCY = TAD

00000000 = TCY = TAD

_ADCS = 0bXXXXXXXX;

Where TCY is your chosen Oscillator period, or

one divided by your Oscillator Frequency, and

TAD is your converter period. This period

must be longer than 600nS for converting.

Replace XXXXXXXX with your chosen option.

Defining the Auto Sample

Time

Since we are using threshold detect we

cannot auto sample so this setting can be

ignored.

Set the Analog to Digital

Conversion Timing

Since we are using threshold detect we

will need to use a timer to control when the

sampling should end and when the conversion

should begin. To do this select a timer from

one of the following options:

0101 = Timer 1 event ends sampling and

starts conversion

0011 = Timer5 event ends sampling and

starts conversion

0010 = Timer3 event ends sampling and

starts conversion

All the timers on the PIC24 are 16 bits but

timers 2 and 3 are linked as well as 4 and 5.

These links make it so you can use timers 2 and

4 as 32-bit timers. However, if you intend on

using timers 3 or 5 for this timing you must

turn off this link so that you can access timers 3

or 5. For this to work properly you need to do

some math on what your timer period will be.

The timer period must encompass our

conversion time which is TAD and our

sampling time as well as the time needed to

start conversion. The data sheet states that

there is a delay of 3 TAD periods after

conversion ends for sampling to begin.

Therefore, our minimum timer period must be

33

4 TAD periods with an additional 750nS for

sampling. To setup the timer, look at our

instructions on page 41 to properly initialize

and set the timer. Some trial and error will be

needed here to find a timer period that works

well with your setup. Use the following line of

code to then enable this setting:

_SSRC = 0bXXXX;

Where XXXX is replaced by the option that you

chose from the list above

Enabling Threshold Detect

To use the threshold detect feature we

need to enable it with the following line of

code:

_ASEN = 1;

Defining Threshold Detect

Interrupt Operation

The threshold detect feature shares the

same interrupt with the normal analog to

digital converter interrupt. This setting will

modify how the interrupt occurs and requires a

more involved version of handling. In our

handling the interrupt section later on we

discuss how to recognize in the interrupt

handler if a threshold detect feature occurred

or if it was a standard conversion interrupt.

The options for the threshold detect are as

follows:

11 = Interrupt after a Threshold Detect

sequence completed and a valid

compare has occurred

10 = Interrupt after a valid compare has

occurred

01 = Interrupt after a Threshold Detect

sequence completed

00 = No interrupt

The interrupt after a threshold detect sequence

completes and a valid compare completes

changes the interrupt to where it will not occur

at all until it has scanned all the pins and one

of those pins met our threshold. The interrupt

after a valid compare changes the interrupt to

only occur after a pin has met our threshold.

The interrupt after a threshold detect sequence

completes means will behave like normal,

interrupting after a certain amount of

conversions but it will also interrupt

immediately if it detects that our threshold is

met. This is the feature you will use 99% of the

time. The last feature disables the interrupt for

the threshold detect and it behaves like a

normal analog to digital converter with the

added feature of the PIC24 keeping track of

what pins met a predefined threshold. After

choose your desired operation use the

following line of code to properly enable this

setting:

_ASINT = 0bXX;

Where XX is replaced by the code for the

operation you would like to use.

Setting Output Location

There are options for where to output

your converted data but it is HIGHLY

recommended you set the following option to

enabled. The reason for this is that it prevents

data from being overwritten and simplifies

accessing your data. When using threshold

detect this feature must almost always be

enabled to prevent your thresholds from being

overwritten accidentally. Use the following

line of code:

_BUFREGEN = 1;

Change the value to 0 to disable this at your

own risk. If you desire to do otherwise this is

at your own discretion and will require some

through reading of the data sheet starting at

page 210. The following only applies to if this

option is enabled. To read the value you must

access it with this call:

ADC1BUFXX

34

Where XX represents the ANXX value that

corresponds to the pin you are reading from.

For example, if you are reading from pin 2 it

corresponds to AN0, see page II of this

document for a diagram of the pinout, and I

would access its converted value with

ADC1BUF0. I could set a variable equal to that

value or you can compare that value in a

comparison statement.

Defining Our Threshold Type

To use threshold detect we need to

define what kind of threshold we would like to

use. The options are as follows:

11 = Outside Window mode (valid

match occurs if the conversion result is

outside of the window defined by the

corresponding buffer pair)

10 = Inside Window mode (valid match

occurs if the conversion result is inside

the window defined by the

corresponding buffer pair)

01 = Greater Than mode (valid match

occurs if the result is greater than the

value in the corresponding buffer

register)

00 = Less Than mode (valid match

occurs if the result is less than the value

in the corresponding buffer register)

If you choose either of the window modes you

are limited to 5 pins which correspond to pins

AN0, AN1, AN2, AN3, and AN4. These are

pins 2, 3, 4, 5, and 6. This is because they use

the buffers of other pins to write their upper

window limit. The pins and buffer pairs are as

shown below:

ADC1BUF0(pin 2) + ADC1BUF9(pin 18)

ADC1BUF1(pin 3) + ADC1BUF10(pin 17)

ADC1BUF2(pin 4) + ADC1BUF11(pin 16)

ADC1BUF3(pin 5) + ADC1BUF12(pin 15)

ADC1BUF4(pin 6) + ADC1BUF13(pin 7)

Where the first pin is the pin you would

measure on and the second pin would be the

one that is disabled. Any of the other options

writes their threshold only to the buffer of the

pin it uses. You can only have one type of

threshold for all your pins defined at one time.

With some creative programming loops and

control it is possible to use different threshold

types for different pins but this requires some

more advanced thought than this guide will

mention. After you have selected an option

from the list above use the following lines of

code:

_CM1 = X;

_CM0 = Y;

Where X is the first digit of the code you

selected and Y is the second digit.

Setting Our Thresholds

We can only set the thresholds when the

analog to digital converter is off. If we want to

change them we must turn of the converter

then turn it back on. To set a threshold for a

pin we need to write the threshold to the

output register of that pin. If we are using any

of the windowed thresholds we write the

lower limit to the threshold of the pin we are

reading from and we write the upper limit to a

corresponding register of another pin. A list of

the paired pins are as follows:

ADC1BUF0(pin 2) + ADC1BUF9(pin 18)

ADC1BUF1(pin 3) + ADC1BUF10(pin 17)

ADC1BUF2(pin 4) + ADC1BUF11(pin 16)

ADC1BUF3(pin 5) + ADC1BUF12(pin 15)

ADC1BUF4(pin 6) + ADC1BUF13(pin 7)

Where the first pin is the one that is read and

the other pin is the one that does not function

during this operation. Make sure you do not

scan the pins that are used to set the upper

limit since they have no corresponding upper

pin. For any other threshold mode any pin can

be used by setting its threshold to its register.

35

To set the threshold use the following line of

code:

ADC1BUFXX = YYYY;

Where XX is the corresponding analog register

number given by the ANXX of the pin we want

to use and YYYY is the value of the threshold.

To calculate what the threshold should be use

the following equation:

Vthreshold

Vreference
× Max Value

Where the max value is 4095 for 12-bit

operation and 1023 for 10-bit operation.

Determining What to Do with

the Converted Voltage

When we use the threshold detect

feature we need to decide what to do with the

converted voltage value. The options we have

are as follows:

10 = Auto-compare only (conversion

results not saved, but interrupts are

generated when a valid match as

defined by CM and ASINT bits occurs)

01 = Convert and save (conversion

results saved to locations as determined

by register bits when a match as defined

by CM bits occurs)

00 = Legacy operation (conversion data

saved to location determined by buffer

register bits)

The first option does not save the voltage value

and is only concerned if our threshold is met.

The second option saves our data according to

our previous output settings, only when the

threshold value is met. The last option saves

the data according to our previous output

settings after every conversion. If you used the

recommended output setting the last two

options are problematic however because our

threshold value gets overwritten. If you didn’t

use the recommended output setting it’s even

more problematic because you won’t know

which output buffer was written to and

therefore which threshold may have been

overwritten. If you use one of these options

you should disable the converter and timer in

your interrupt handler, process the value, reset

the threshold, and reenable your converter and

timer when you’re done. It is recommended

you use the first option for simplicity sake

since there is a dedicated register that will tell

you which pin met its threshold so you don’t

have to worry about its value. After choosing a

setting use the following lines of code:

_WM1 = X;

_WM0 = Y;

Where X is the first digit of your option and Y

is the second digit of your option.

Configuring the Analog to

Digital Converter Interrupt

This step is optional but the interrupt

rate must still be set even if this is not used.

After sampling all your pins, you can throw an

interrupt to pause your main loop and run

specific code in response to that data. To do

this we need the following three lines of code:

_AD1IP = X;

_AD1IF = 0;

_AD1IE = 1;

Where X represents the priority of the interrupt

and needs a value between 1 and 7. 1 being

least important 7 being most important. This

only matters if interrupts will potentially occur

at the same time and one has to be done before

the other. I always set them as 4. The _ADC1IF

command refers to the interrupt flag. When we

handle the interrupt, we must clear the flag so

that the code can continue running normally

after the interrupt handler or we will be

infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

36

which can be useful if there are times where

you are not concerned with responding to the

data acquisition.

Handling the Analog to

Digital Converter Interrupt

THIS IS VERY IMPORTANT WITH

THRESHOLD DETECT. If we have enabled the

interrupt we must handle that interrupt. With

threshold detect it is HIGHLY recommended

that you have the interrupt enabled. Also,

when using threshold detect this operation

changes based on the settings we changed in

the Defining Threshold Detect Interrupt

section. If we used either of the first two

options an interrupt will only occur after a

value that meets a threshold is detected. The

third option will have interrupts when after it

scans all the pins or when a threshold is met. It

is important to note with the third option

interrupts can be either a threshold was met or

it scanned all the pins. In the next section we

address how to distinguish which pins met

their thresholds. We must create a handler for

the interrupt in our code. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__ ((interrupt, no_auto_psv))

_ADC1Interrupt(void){

_AD1IF = 0;

/*your code here*/

}

The handler must be written with that name in

order for the PIC24 to properly function. The

interrupt flag line must also always be at the

top of the interrupt to clear the flag.

Identifying Which Pins Have

Met their Thresholds

In the code to handle your interrupt you

need to identify which pins may have met their

threshold. If a pin meets a threshold the

AD1CHITL register bit corresponding to the

pin is thrown high. This must be cleared by the

user so it makes the most sense in your

interrupt handler to check which pins are high,

clear them, act on the information, repeat. To

check and write to the corresponding bit use

the following call:

_CHHXX

Where XX is replaced by the corresponding XX

value for the ANXX value of the pin we are

using. If set that bit equal to zero then we have

cleared it. If we check that bit and see it is

equal to one then we know that the pin met

our threshold requirements. It is important to

note however that for the Outside window

mode operation this bit is written as one is the

data was written to the ADC1BUFXX register

or if a match occurred. If you have turned of

data saving it will only occur when a match

has happened. See the code example below to

understand what I would do in the handler.

Enabling the Analog to

Digital Converter

The last thing to do is enable the analog

to digital converter with the following line of

code:

_ADON = X;

Where X is 1 for on and 0 for off. You can turn

it on and off freely so you are not always

converting if not needed.

37

Code Example – Configuring the Analog
to Digital Converter with Threshold

Detect
/*

* File: main.c

* Author: Spencer Mosley

* Created on June 7, 2022, 1:32 PM

* Description: In this code I set pins 17 and 18 as analog inputs and configure the A/D

* converter with threshold detect to know when they become greater than 1.61V. I also

* configure an interrupt for when the data is available or when a pin is above the

* threshold. In my interrupt handler I process data and check which pins exceed 1.61V.

* This document is provided as a reference material

*/

#include "xc.h"

void __attribute__((interrupt, no_auto_psv)) _ADC1Interrupt(void){

_AD1IF = 0; //clears interrupt flag

if(_CHH10 == 1){ //if pin 17 was greater than 1.61V

_CHH10 = 0; //clears threshold detected flag

/*code would go here for pin 17*/

}

else{

/*what to do if pin 17 is not above 1.61V*/

}

/*DO NOT use else if statements. If the first pin meets the condition all the else if statements

are ignored. Instead each pin should be an if statement of its own to ensure we are checking

each pin*/

if(_CHH9 == 1){ //if pin 18 was greater than 1.61V

_CHH9 = 0; //clears threshold detected flag

/*code would go here for pin 18*/

}

else{

/*what to do if pin 18 is not above 1.61V*/

}

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

38

/*pin 17 is RB14 and AN10*/

/*pin 18 is RB15 and AN9*/

_RCDIV = 0b100; // sets a 16 post scaler

/*Reset All Registers We will be Using*/

AD1CON1 = 0;

AD1CON2 = 0;

AD1CON3 = 0;

AD1CON5 = 0;

AD1CSSL = 0;

AD1CSSH = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Pins we want to use as Analog Pins and Inputs*/

_ANSB14 = 1; //sets pin 17 as an analog pin

_ANSB15 = 1; //sets pin 18 as an analog pin

_TRISB14 = 1; //sets pin 17 as an input

_TRISB15 = 1; //sets pin 18 as an input

/*Set Positive and Negative Voltage References*/

_PVCFG = 0b00; //selects voltage reference

_NVCFG = 0; //selects ground reference

/*Set Bit Mode*/

_MODE12 = 1; //sets converter to the 12-bit operating mode

/*Set Output Format*/

_FORM = 0b00; //sets converter to absolute decimal format

/*Set Auto Sampling*/

_ASAM = 1; //enables auto sampling

/*Set Auto Scanning of Inputs*/

_CSCNA = 1; //auto scanning enabled

/*Define which Pins to Scan*/

_CSS10 = 1; //enables scanning of pin 17

_CSS9 = 1; //enables scanning of pin 18

/*Choose Interrupt Rate*/

//(2 – 1) in binary is 00001

_SMPI = 00001; // interrupts every other sample

/*Define the Analog to Digital Converter Clock Cycle*/

_ADCS = 0b00000000; //sets clock to be the same as the system clock

/*Set Conversion Timing*/

_SSRC = 0b0101; //sets timer one as managing the timing for the converter

/*Configure Timer 1*/

39

T1CON = 0; //clears timer 1 configuration register

T1CONbits.TCKPS = 0b00; //sets a prescaler value of 1

T1CONbits.TCS = 0; //sets the clock to the internal oscillator

PR1 = 100; //sets the timer period

T1CONbits.TON = 1; //turn on timer 1

/*Define the Auto Sample Time*?

_SAMC = 0b00001; //set to one clock cycle but not needed with threshold detect

/*Enable Threshold Detect*/

_ASEN = 1; //enables threshold detect feature

/*Define Threshold Detect Interrupt Operation*/

_ASINT = 0b01; //sets interrupt to occur when input scanning completes

/*Set Output Location*/

_BUFREGEN = 1; //sets output to buffers corresponding to pins

/*Define Threshold Type*/

_CM1 = 0; //sets the threshold type to greater than

_CM0 = 1;

/*Setting the Thresholds*/

ADC1BUF10 = 2000; //sets the voltage threshold to 1.61V

ADC1BUF9 = 2000; //sets the voltage threshold to 1.61V

/*What to do with the Converted Value*/

_WM1 = 1; //sets the PIC24 to discard converted values

_WM0 = 0;

/*Configure the Analog to Digital Converter Interrupt*/

_AD1IP = 4; //sets interrupt priority to 4

_AD1IF = 0; //clears interrupt flag

_AD1IE = 1; //enables interrupt

/*Turn on Analog to Digital Converter*/

_ADON = 1; //turns analog to digital converter on

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

40

Configuring a Timer and Timer Interrupt

About the Timers on the

PIC24

The PIC24 has five 16-bit timers on

board, four of which are linked to make two

32-bit timers. You can unlink one or both of the

32-bit timers if you so desire. The bits

determine how many cycles you can count and

thus how long your timer may be without a

prescaler. A 16-bit timer can count 65,535

cycles and a 32-bit timer can count 4.29 X 10^9

cycles. To convert this into time use the

following equation:

1

𝑓oscillator
× Prescaler × Cycles = Time

Where 𝑓oscillator is the frequency of your

oscillator after the postscaler and the cycles is

how many cycles you intend to count.

Alternatively, you can solve the equation with

a time in mind and find how many cycles you

need. If you set a prescaler the timer will only

count every so many cycles effectively

increasing the time you can count. A prescaler

of two means every other cycle it counts, of

four every fourth cycle, etc. Bear this in mind

for your designs because timers are used to

operate different features such as the threshold

detect on the analog to digital converter and

input capture. Timers are also useful for

ensuring something happens every so often

even if other code may be running.

Clear the Timer Register

To start clear the Register of the timer

you intend to use. TO do this sue the following

line of code:

TXCON = 0;

Where X is replaced with the value of the timer

you wish to use, being 1-5. If you are using the

32-bit timers, timers 2 and 4 are the timers

whose registers correspond to those controls.

Optional: Unlink Timers

If you are unlinking timer 3 from timer 2

or timer 5 from timer 4 to have more 16-bit

timers you need to use the following line of

code:

TXCONbits.T32 = 0;

Where X is 2 or 4 depending on which timer

you are resetting. The first line clears the

parent timer settings and the second unlinks

the child timers. After doing this you can

configure both timers normally.

Set the Timer Clock Source

While there are different options for the

clock source, it is always recommended to use

the internal oscillator as the clock. If you desire

to choose otherwise refer to the manual for

instructions on how and what to do for this. To

set the clock sue the following line of code:

TXCONbits.TCS = 0;

Where X is the number of the timer you are

configuring.

Set the Timer Prescaler

We need to decide which prescaler to

use for our timer to match the time we want to

count. The options are as follows:

11 = 1:256

10 = 1:64

01 = 1:8

00 = 1:1

Where the value after the colon is the value of

your prescaler. IMPORTANT: The prescaler

value is reset whenever we write to the TMRX

register, we turn off the timer, or the device

41

resets. If you plan on turn off and turning on

the timer or prematurely resetting the timer

due to some event make sure you set the

prescaler again. To set it use the following line

of code:

TYCONbits.TCKPS = XX;

Where Y is the number of the timer you’re

configuring and XX is the code for the

prescaler you would like to use.

Set the Timer Period

In order for the timer to function

correctly we need to tell it how long to count

for. After calculating how many cycles you will

need use the following line of code to set the

period of the timer:

PRX = Y;

Where X is the number of the timer you are

configuring and Y is the number of cycles you

intend to count.

Configuring the Timer

Interrupt

To know when the timer has finished

counting we need to configure an interrupt

that will be called when that happens. To do so

we use the following lines of code:

_TXIP = Y;

_TXIF = 0;

_TXIE = 1;

Where X is the number of the timer which you

are configuring. Y represents the priority of the

interrupt and needs a value between 1 and 7. 1

being least important 7 being most important.

This only matters if interrupts will potentially

occur at the same time and one has to be done

before the other. I always set them as 4. The

_TXIF command clears the interrupt flag.

When we handle the interrupt, we must clear

the flag so that the code can continue running

normally after the interrupt handler or we will

be infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

you are not concerned with responding to the

timer. Alternatively, you could turn the timer

off.

Handling the Timer Interrupt

When the interrupt is called we need to

make a handler that clears the interrupt flag

and reacts to the interrupt. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__ ((interrupt, no_auto_psv))

_T$Interrupt(void){

_T$IF = 0;

/*your code here*/

}

Where the $ in the handler name is replaced

with the number of the timer you are

configuring. The handler must be written with

that name in order for the PIC24 to properly

function. The interrupt flag line must also

always be at the top of the interrupt to clear the

flag.

Turning on the Timer

The last step is to turn on the timer with

the following line of code:

TXCONbits.TON = 1;

Where X is the number of the timer you are

configuring

Optional: Gated Timer

Operation Mode

The timers have an additional

functionality that may or may not be useful to

you. This function known as gated

accumulation makes use of preset pins which

42

must be set as digital inputs. The pins and the

timers they are associated with are as follows:

T1CK (pin 13) = Timer 1

T2CK (pin 18) = Timer 2

T3CK (pin 18) = Timer 3

T4CK (pin 6) = Timer 4

T5CK (pin 6) = Timer 5

Gated accumulation means that when the

corresponding pin goes high the timer will

start counting and throw an interrupt when the

signal goes low or when the timer counts its

full period, whichever comes first. This is great

for if you are receiving a signal that you need

to know if it stays on longer or shorter than a

certain time period. An example would be if

you wanted to know if a limit switch had been

pressed for more than half a second and do

something if it was. You would enable this and

then in your while loop or other control

structure check the TMRX value to see how

long it has been. It is important to note that the

time that it was on does not get saved

anywhere when the interrupt is thrown and is

lost. Use input capture to track how long

something has been on and use the time for

calculations or inputs. To enable this feature,

use this line of code:

TXCONbits.TGATE = 1;

Where X is replaced with the number of the

timer you are configuring.

43

Code Example – Configuring Timer 2
with a Timer Interrupt

/*

* File: main.c

* Author: Spencer Mosley

* Created on June 7, 2022

* Description: In this code I configure timer 2 to count for half a second and then throw

* an interrupt. I also configure a handler for that interrupt that would run code every

* half second.

* This document is provided as a reference material

*/

#include "xc.h"

void __attribute__((interrupt, no_auto_psv)) _T2Interrupt(void){

_T2IF = 0; //clears interrupt flag

/*your code here*/

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

_RCDIV = 0b100; //sets a 16 post scaler

/*Reset All Registers We will be Using*/

T2CON = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Unlink Timer 2 from Timer 3*/

T2CONbits.T32 = 0; //unlinks timer 2 from timer 3 so it is a 16-bit timer

/*Set the Timer 2 Clock Source*/

T2CONbits.TCS = 0; //sets timer 2 clock to the internal oscillator

/*Set Timer 2 Prescaler Value*/

/*I want to be able to count for half a second so my math would be ((.5/65535)*250000) =

Prescaler. This equals 1.9 and I can only go up so I set a prescaler value of 8 in order to be able

to count half a second*/

T2CONbits.TCKPS = 0b01;

/*Set the Timer Period*/

/*With my prescaler selected I need to solve now for the cycles I need to count in order to get

44

half a second. My math for this would be as follows: ((.5/8)*250000) which gives me 15625*/

PR2 = 15625 //sets the timer period to half a second

/*Configure the Timer 2 Interrupt*/

_T2IP = 4; //sets the timer 2 interrupt priority to 4

_T2IF = 0; //clears the timer 2 interrupt flag

_T2IE = 1; //enables the timer 2 interrupt flag

/*Turn on Timer 2*/

T2CONbits.TON = 1;

/*Let the Interrupt Control the Rest of the Code*/

while(1);

return 0;

}

45

Configuring a PWM Signal and Counter
Interrupt without Fault Inputs

Output Compare Registers

The PIC24 has 3 built in PWM signals

that are available for use. Each of these has

their own set of control registers that are called

the output compare registers. The PWM pins

and their associated registers are as listed:

OC1CON1

OC1CON2: Pin 14

OC2CON1

OC2CON2: Pin 4

OC3CON1

OC3CON2: Pin 5

Depending on which pin you plan on using

refer to this list to know which register to call

and configure.

Clear Relevant Registers

After clearing all the ANSX, TRISX, and

LATX registers to make sure the pins are reset,

you should also clear the output compare

registers associated with the pin you plan on

using. To do this use these lines of code for

each pin you plan on using:

OCXCON1 = 0;

OCXCON2 = 0;

Where the X is replaced with the associated

value for the pin you are using.

Select the Output Compare

Clock

Each output compare pin has its own

dedicated timer in the output compare module

so that it can time its period and duty cycle.

We need define which source the internal timer

uses and the options are as follows:

111 = System clock

110 = Reserved

101 = Reserved

100 = Timer1

011 = Timer5

010 = Timer4

001 = Timer3

000 = Timer2

If you use any of the timer options you need to

have that timer configured and on before you

enable the output compare module. Unless the

period you want to use is more than a 16-bit

timer could count, you should use the system

clock. If you want to use another option refer

to the manual for more instructions. Another

option to look at in the manual if you have a

very long period is cascading OC1 and OC2 to

create a 32-bit PWM counter. This also can

increase the period but will not be covered

further in this guide but is covered in the

manual. To set the clock use the following line

of code:

OCXCON1bits.OCTSEL = 0bYYY;

Where X is the number corresponding to the

pin you are using and YYY is the value of the

clock you intend on using.

Select the Output Compare

Operating Mode

When using the output compare

module there are 8 operating modes that can

be used. 6 of them deal with generating a pulse

or a delayed output. For more information

refer to the manual. The two we are concerned

with are the following options:

46

111 = Center-Aligned PWM on OCx

110 = Edge-Aligned PWM on OCx

Where center-aligned PWM means that the

high portion of the PWM is set in the middle of

the period rather at the beginning. The edge-

aligned PWM mode has the signal start high

and go low after the duty cycle is reached, then

stays low until the period is over. If you intend

on using the optional fault pin capabilities

mentioned later on you must use the center-

aligned PWM option. Besides that, either or is

fine for a PWM signal. Most times defaulting to

an edge-aligned PWM is easier for people to

understand and diagnose with an oscilloscope.

To set the operating mode use the following

line of code:

OCXCON1bits.OCM = 0bYYY;

Where X is the corresponding number for the

pin you are configuring and YYY is the code

for the option you chose.

Set the Output Compare

Module to Sync Mode

The output compare module can be

triggered by or synced by a module. Trigger

mode is used for the other operating modes of

the output compare module. For PWM

applications it should be set to be synced by a

source to keep the module timed properly. To

set it to sync mode use this line of code:

OCXCON2bits.OCTRIG = 0;

Where X is the corresponding number for the

pin you are configuring.

Set the Output Compare

Module Sync Source

The output compare module timer

counts according to the clock that we defined

earlier but the module must know when the

end of a period occurs. There are many options

that can be used to sync with but for PWM

applications we should have the module sync

with its own timer to ensure the duty cycle and

frequency are properly set. To look at other

options look at the manual for more

information. To set the sync source to the

output compare module itself use this line of

code:

OCXCON2bits.SYNSEL = 0b11111;

Where X is the corresponding number for the

pin you are configuring.

Set the PWM Period

To set the period of the PWM signal we

need to calculate what value the output

compare module needs to count to. Use the

following equation to find that value:

1
𝑓PWM

1
𝑓oscillator

− 1 = Period

Where 𝑓PWM is your desired frequency and

𝑓oscillator is your set clock frequency. After you

have that value use the following line of code

to set the period:

OCXRS = Period;

Where X is the corresponding number for the

pin you are configuring.

Set the PWM Duty Cycle

To set the PWM duty Cycle value use

the following equation:

Period ×
% Duty Cycle

100
= Duty Cycle

After finding your duty cycle value use this

line of code to set your duty cycle:

OCXR = Duty Cycle;

Where X is the corresponding number for the

pin you are configuring.

Configuring a Counter

Interrupt

47

A counter interrupt occurs after every

pulse from a PWM signal. It can be used to

count the pulses for things like counting steps

on a stepper motor, counting time, or reacting

to sensors while a PWM signal is being driven.

To configure it use the following lines of code:

_OCXIP = Y;

_OCXIF = 0;

_OCXIE = 1;

Where X represents the module which you are

configuring. Y is the priority of the interrupt

and needs a value between 1 and 7. 1 being

least important 7 being most important. This

only matters if interrupts will potentially occur

at the same time and one has to be done before

the other. I always set them as 4. The _OCXIF

command clears the interrupt flag. When we

handle the interrupt, we must clear the flag so

that the code can continue running normally

after the interrupt handler or we will be

infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

you are not concerned with counting the PWM

cycles.

Handling a Counter Interrupt

When the interrupt is called we need to

make a handler that clears the interrupt flag

and reacts to the interrupt. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__ ((interrupt, no_auto_psv))

_OC$Interrupt(void){

_OC$IF = 0;

/*your code here*/

}

Where the $ in the handler name is replaced

with the number of the module you are

configuring. The handler must be written with

that name in order for the PIC24 to properly

function. The interrupt flag line must also

always be at the top of the interrupt to clear the

flag.

Optional: Using the Counter

Interrupt without a PWM

Output

The output compare module can be

used in PWM mode like a timer interrupt to

run code at consistent intervals and leave the

pin open for other uses. This is done by using

the following line of code:

OCXCON2bits.OCTRIS = 1;

Where X is the number of the module which

you are configuring. This sets the output of the

compare module to be tri-stated, meaning a

high impedance state that effectively removes

it from the other circuits on the PIC24. This

means we can still use the pin as an analog

input or digital I/O pin while using the output

compare module.

Optional: Inverting the PWM

Output

The output compare module can be

inverted where the duty cycle setting is treated

as the low time percentage of the period. To set

this use this line of code:

OCXCON2bits.OCINV = 1;

Where X is the number of the module which

you are configuring.

48

Code Example – Configuring a PWM
Signal and Counter Interrupt without

Fault Inputs
/*

* File: main.c

* Author: Spencer Mosley

* Created on June 8, 2022

* Description: In this code I configure the PWM signal on pin 14 to run at 50Hz and

* have a duty cycle of 50%. I also configure a counter interrupt that will increment a

* global variable for each pulse of the PWM.

* This document is provided as a reference material

*/

#include "xc.h"

int count = 0; //a global variable I want to increment in my counter interrupt

void __attribute__((interrupt, no_auto_psv)) _OC1Interrupt(void){

_OC1IF = 0; //clears interrupt flag

count++; //increments my global variable

/*your code here*/

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

_RCDIV = 0b100; //sets a 16 post scaler

/*Reset All Registers We will be Using*/

OC1CON1 = 0;

OC1CON2 = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Output Compare Module Clock*/

OC1CON1bits.OCTSEL = 0b111; //tells the OC1 module to use the system clock

/*Set the Output Compare Operating Mode*/

OC1CON1bits.OCM = 0b110; //sets the OC1 module to Edge-Aligned PWM mode

/*Set the Output Compare Module to Sync Mode*/

OC1CON2bits.OCTRIG = 0; //sets the OC1 module to sync mode and not trigger mode

49

/*Set the Output Compare Module Sync Source*/

OC1CON2bits.SYNSEL = 0b11111; //sets the OC1 module to sync to its own counter

/*Set the PWM Period*/

/*To get 50Hz on the PWM my math would be ((1/50)/(1/250000)) – 1. This gives me 4999

which is in the range of the PWM 16-bit counter*/

OC1RS = 4999; //sets OC1 period to 50Hz

/*Set PWM Duty Cycle*/

/*For a 50% duty cycle I divide the value I got for the period by two which is just under

2500*/

OC1R = 2500; //sets a 50% duty cycle

/*Configuring the Counter Interrupt*/

_OC1IP = 4; //sets the OC1 counter interrupt priority to 4

_OC1IF = 0; //clears the OC1 counter interrupt flag

_OC1IE = 1; //enables the OC1 counter interrupt

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

50

Configuring a PWM Signal and Counter
Interrupt with Fault Inputs

Output Compare Registers

The PIC24 has 3 built in PWM signals

that are available for use. Each of these has

their own set of control registers that are called

the output compare registers. The PWM pins

and their associated registers are as listed:

OC1CON1

OC1CON2: Pin 14

OC2CON1

OC2CON2: Pin 4

OC3CON1

OC3CON2: Pin 5

Depending on which pin you plan on using

refer to this list to know which register to call

and configure.

Clear Relevant Registers

After clearing all the ANSX, TRISX, and

LATX registers to make sure the pins are reset,

you should also clear the output compare

registers associated with the pin you plan on

using. To do this use these lines of code for

each pin you plan on using:

OCXCON1 = 0;

OCXCON2 = 0;

Where the X is replaced with the associated

value for the pin you are using.

Select the Output Compare

Clock

Each output compare pin has its own

dedicated timer in the output compare module

so that it can time its period and duty cycle.

We need define which source the internal timer

uses and the options are as follows:

111 = System clock

110 = Reserved

101 = Reserved

100 = Timer1

011 = Timer5

010 = Timer4

001 = Timer3

000 = Timer2

If you use any of the timer options you need to

have that timer configured and on before you

enable the output compare module. Unless the

period you want to use is more than a 16-bit

timer could count, you should use the system

clock. If you want to use another option refer

to the manual for more instructions. Another

option to look at in the manual if you have a

very long period is cascading OC1 and OC2 to

create a 32-bit PWM counter. This also can

increase the period but will not be covered

further in this guide but is covered in the

manual. To set the clock use the following line

of code:

OCXCON1bits.OCTSEL = 0bYYY;

Where X is the number corresponding to the

pin you are using and YYY is the value of the

clock you intend on using.

Select the Output Compare

Operating Mode

When using the output compare

module there are 8 operating modes that can

be used. 6 of them deal with generating a pulse

or a delayed output. For more information

refer to the manual. The two we are concerned

with are the following options:

51

111 = Center-Aligned PWM on OCx

110 = Edge-Aligned PWM on OCx

Where center-aligned PWM means that the

high portion of the PWM is set in the middle of

the period rather at the beginning. The edge-

aligned PWM mode has the signal start high

and go low after the duty cycle is reached, then

stays low until the period is over. If you intend

on using the optional fault pin capabilities

mentioned later on you must use the center-

aligned PWM option. Besides that, either or is

fine for a PWM signal. Most times defaulting to

an edge-aligned PWM is easier for people to

understand and diagnose with an oscilloscope.

To set the operating mode use the following

line of code:

OCXCON1bits.OCM = 0bYYY;

Where X is the corresponding number for the

pin you are configuring and YYY is the code

for the option you chose.

Set the Output Compare

Module to Sync Mode

The output compare module can be

triggered by or synced by a module. Trigger

mode is used for the other operating modes of

the output compare module. For PWM

applications it should be set to be synced by a

source to keep the module timed properly. To

set it to sync mode use this line of code:

OCXCON2bits.OCTRIG = 0;

Where X is the corresponding number for the

pin you are configuring.

Set the Output Compare

Module Sync Source

The output compare module timer

counts according to the clock that we defined

earlier but the module must know when the

end of a period occurs. There are many options

that can be used to sync with but for PWM

applications we should have the module sync

with its own timer to ensure the duty cycle and

frequency are properly set. To look at other

options look at the manual for more

information. To set the sync source to the

output compare module itself use this line of

code:

OCXCON2bits.SYNSEL = 0b00000;

Where X is the corresponding number for the

pin you are configuring.

Set the PWM Period

To set the period of the PWM signal we

need to calculate what value the output

compare module needs to count to. Use the

following equation to find that value:

1
𝑓PWM

1
𝑓oscillator

− 1 = Period

Where 𝑓PWM represents your desired frequency

and 𝑓oscillator represents your set clock

frequency. After you have that value use the

following line of code to set the period:

OCXRS = Period;

Where X is the corresponding number for the

pin you are configuring.

Set the PWM Duty Cycle

To set the PWM duty Cycle value use

the following equation:

Period ×
% Duty Cycle

100
= Duty Cycle

After finding your duty cycle value use this

line of code to set your duty cycle:

OCXR = Duty Cycle;

Where X is the corresponding number for the

pin you are configuring.

Using Fault Inputs

52

The PIC24 has 3 fault options that can be

used with the output compare modules.

Depending on the fault configuration you

choose you could have it so if the fault pin goes

low the PWM signal pin stops outputting a

signal and instead is either forced to be low or

high, until the fault pin goes high or until you

programmatically reset the fault signal. The

fault options are as follows:

Comparator Module (Comparator 1 for

OC1 and OC2 and Comparator 2 for

OC3)

OCFA = Pin 17;

OCFB = Pin 16;

The first option uses one of the 3 on board

comparator modules for its operation. You

must enable this fault on the module you want

it to affect after you have configured and

enabled the associated comparator. Refer to the

manual for more information on configuring

the comparator module and using it. The

second and third options are two active low

pins that are shared for all output compare

modules.

Enabling Fault Inputs

To use fault inputs, use the line of code

below that corresponds to the fault you want

to use:

OCXCON1bits.ENFLT2 = 1;

OCXCON1bits.ENFLT1 = 1;

OCXCON1bits.ENFLT0 = 1;

Where X is the corresponding number for the

output compare module, you are configuring.

The first line enables the comparator fault for

the module of your choice, the second the

OCFB fault, and the third the OCFA fault.

Determining Fault Input

Mode

After setting which modules will use

what faults you need to define how these faults

will impact the modules and how to respond

to the fault. The following options deal with

the fault operating mode:

1 = Fault mode is maintained until the

Fault source is removed and the

corresponding OCFLTx bit is cleared in

software

0 = Fault mode is maintained until the

Fault source is removed and a new

PWM period starts

Where the first option states that after a fault is

removed the user must clear the fault bit to

resume the PWM signal and the second states

that after the fault is removed the PWM

resumes by itself. After selecting the operating

mode you would like to enable, use this line of

code to set it:

OCXCON2bits.FLTMD = Y;

Where X is the corresponding number for the

pin you are configuring. And Y is the option

you chose.

Determining Fault Input

Effect

The next option determines how the

PWM pin reacts to a fault and the options are

as follows:

1 = Pin is forced to an output on a Fault

condition

0 = Pin I/O condition is unaffected by a

Fault

In the first option you decide which output

should be forced on the PWM pin. The second

option leaves it wherever the PWM signal was

at be it high or low. To set this option use this

line of code:

OCXCON2bits.FLTTRIEN = Y;

Where X is the corresponding number for the

pin you are configuring. And Y is the option

53

you chose. If you chose the first option you

also must change the following setting which

determines what to output on a fault condition:

1 = PWM output is driven high on a

Fault

0 = PWM output is driven low on a

Fault

After making a choice set it with this line of

code:

OCXCON2bits.FLTOUT = Y;

Where X is the corresponding number for the

pin you are configuring. And Y is the option

you chose.

Resetting Fault Input Status

The last thing you may need to do is

programmatically reset the fault status bit if

you set the fault input mode, FLTMD, to 1. If

you did you need a line of code from the list

below somewhere in your code when you

want the PWM to start again after the fault

condition is resolved:

OCXCON1bits.OCFLT2 = 0;

OCXCON1bits.OCFLT1 = 0;

OCXCON1bits.OCFLT0 = 0;

Where X is the corresponding number for the

pin you are configuring. The first line is for if a

comparator fault was tripped, the second if

OCFB fault was tripped, and the third for if the

OCFA fault was tripped.

Configuring a Counter

Interrupt

A counter interrupt occurs after every

pulse from a PWM signal. It can be used to

count the pulses for things like counting steps

on a stepper motor, counting time, or reacting

to sensors while a PWM signal is being driven.

To configure it use the following lines of code:

_OCXIP = Y;

_OCXIF = 0;

_OCXIE = 1;

Where X represents the module which you are

configuring. Y is the priority of the interrupt

and needs a value between 1 and 7. 1 being

least important 7 being most important. This

only matters if interrupts will potentially occur

at the same time and one has to be done before

the other. I always set them as 4. The _OCXIF

command clears the interrupt flag. When we

handle the interrupt, we must clear the flag so

that the code can continue running normally

after the interrupt handler or we will be

infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

you are not concerned with counting the PWM

cycles.

Handling a Counter Interrupt

When the interrupt is called we need to

make a handler that clears the interrupt flag

and reacts to the interrupt. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__ ((interrupt, no_auto_psv))

_OC$Interrupt(void){

_OC$IF = 0;

/*your code here*/

}

Where the $ in the handler name is replaced

with the number of the module you are

configuring. The handler must be written with

that name in order for the PIC24 to properly

function. The interrupt flag line must also

always be at the top of the interrupt to clear the

flag.

54

Optional: Using the Counter

Interrupt without a PWM

Output

The output compare module can be

used in PWM mode like a timer interrupt to

run code at consistent intervals and leave the

pin open for other uses. This is done by using

the following line of code:

OCXCON2bits.OCTRIS = 1;

Where X is the number of the module which

you are configuring. This sets the output of the

compare module to be tri-stated, meaning a

high impedance state that effectively removes

it from the other circuits on the PIC24. This

means we can still use the pin as an analog

input or digital I/O pin while using the output

compare module.

Optional: Inverting the PWM

Output

The output compare module can be

inverted where the duty cycle setting is treated

as the low time percentage of the period. To set

this use this line of code:

OCXCON2bits.OCINV = 1;

Where X is the number of the module which

you are configuring.

55

Code Example – Configuring a PWM
Signal and Counter Interrupt with Fault

Inputs
/*

* File: main.c

* Author: Spencer Mosley

* Created on June 8, 2022

* Description: In this code I configure the PWM signal on pin 14 to run at 50Hz and

* have a duty cycle of 50%. I then configure a counter interrupt that will increment a

* global variable for each pulse of the PWM. Finally, I configure a fault interrupt on

* OCFB (pin 16) that will drive the PWM pin to a low output if it goes low.

* This document is provided as a reference material

*/

#include "xc.h"

int count = 0; //a global variable I want to increment in my counter interrupt

void __attribute__((interrupt, no_auto_psv)) _OC1Interrupt(void){

_OC1IF = 0; //clears interrupt flag

count++; //increments my global variable

/*your code here*/

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

_RCDIV = 0b100; //sets a 16 post scaler

/*Reset All Registers We will be Using*/

OC1CON1 = 0;

OC1CON2 = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Set Output Compare Module Clock*/

OC1CON1bits.OCTSEL = 0b111; //tells the OC1 module to use the system clock

/*Set the Output Compare Operating Mode*/

OC1CON1bits.OCM = 0b110; //sets the OC1 module to Edge-Aligned PWM mode

/*Set the Output Compare Module to Sync Mode*/

56

OC1CON2bits.OCTRIG = 0; //sets the OC1 module to sync mode and not trigger mode

/*Set the Output Compare Module Sync Source*/

OC1CON2bits.SYNSEL = 0b11111; //sets the OC1 module to sync to its own counter

/*Set the PWM Period*/

/*To get 50Hz on the PWM my math would be ((1/50)/(1/250000)) – 1. This gives me 4999

which is in the range of the PWM 16-bit counter*/

OC1RS = 4999; //sets OC1 period to 50Hz

/*Set PWM Duty Cycle*/

/*For a 50% duty cycle I divide the value I got for the period by two which is just under

2500*/

OC1R = 2500; //sets a 50% duty cycle

/*Enable OCFB Fault Input*/

OC1CON1bits.ENFLT1 = 1; //enables the OCFB (pin 16) fault input

/*Set Fault Input Mode*/

OC1CON2bits.FLTMD = 0; //PWM starts automatically after the fault goes high

/*Set Fault Input Effect*/

OC1CON2bits.FLTTRIEN = 1; //forces pin 14 to an output when faulted

/*Set PWM Output after Fault Input*/

OC1CON2bits.FLTOUT = 0; //forces pin 14 to be low when faulted

/*Configuring the Counter Interrupt*/

_OC1IP = 4; //sets the OC1 counter interrupt priority to 4

_OC1IF = 0; //clears the OC1 counter interrupt flag

_OC1IE = 1; //enables the OC1 counter interrupt

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

57

Configuring Input Capture and Input
Capture Interrupts

About Input Capture

The PIC24 has 3 input compare modules

onboard that can measure how long a pin has

been on or off. Each of these modules has its

own in built 16-bit timer. The first two can also

be linked to make a 32-bit timer if needed. This

however can most often be avoided with

careful planning on the part of the user. If you

intend on using a 32-bit timer see the manual

for more details on how this is done. Use input

capture when measuring pulses from devices

like the HC-SR04 ultrasonic range finder

whose output is a pulse whose width tells you

how far away it sensed an obstacle. See the

Code Example below on page 62 for more

information on how to do that. The pins that

these modules are connected to are as follows:

IC1 = pin 14

IC2 = pin 13

IC3 = pin 15

Clear Input Capture Control

Registers

Each of the input capture modules on

the PIC24 has two registers that control the

settings for its use. You should clear these

registers when you start your code with these

lines of code:

ICXCON1 = 0;

ICXCON2 = 0;

Where X is replaced with the number of the

module you are configuring.

Select Input Capture Clock

The input capture modules need a clock

to count off of for their timers. It is important

to note that the input capture module timers

have no prescaling capabilities so if you

anticipate a longer period than a 16-bit timer

with your clock frequency would read you

should plan on using one of the timers that is

properly setup with a prescaler value to divide

your clock frequency. The options for the clock

selection are as follows:

111 = System clock (FOSC/2)

110 = Reserved

101 = Reserved

100 = Timer1

011 = Timer5

010 = Timer4

001 = Timer2

000 = Timer3

Use the following line of code after having

made your selection:

ICXCON1bits.ICXTSEL = 0bYYY;

Where X is replaced with the value of module

you are configuring and YYY is replaced with

the option you chose.

Select Input Capture Mode

The input capture module needs to

know when its needs to write its timer value to

its FIFO buffer. The mode options and a

definition of each are as follows:

101 = Prescaler Capture mode: Capture

on every 16th rising edge – This means

that you will have started the ICX timer

earlier and when it has counted 16

58

rising edges whatever the value of that

timer is gets saved to the ICX FIFO

buffer.

100 = Prescaler Capture mode: Capture

on every 4th rising edge – This means

that you will have started the ICX timer

earlier and when it has counted 4 rising

edges whatever the value of that timer is

gets saved to the ICX FIFO buffer.

011 = Simple Capture mode: Capture on

every rising edge – This means that you

will have started the ICX timer earlier

and whenever a rising edge occurs the

value of that timer gets saved to the ICX

FIFO buffer.

010 = Simple Capture mode: Capture on

every falling edge – This means that you

will have started the ICX timer earlier

and whenever a falling edge occurs the

value of that timer gets saved to the ICX

FIFO buffer.

001 = Edge Detect Capture mode:

Capture on every edge (rising and

falling); ICI<1:0> bits do not control

interrupt generation for this mode –

This means that you will have started

the ICX timer earlier and whenever a

rising edge or a falling edge occurs the

value of that timer gets saved to the ICX

FIFO buffer. Also, the interrupt will go

off after every change in the pins value

and this cannot be changed.

000 = Input capture module is turned off

If you are trying to read a pulse coming in you

should use the Edge Detect Capture mode

because it makes it easy to start and end the

timer as the signal comes in. The other options

are more useful for trying to count incoming

pulses and time the interval between them.

Later we will discuss timing options and how

they relate to the options above.

Select Input Capture Timing

Method

The input capture modules have three

options on how they can tell when to start their

timer and when to reset it. These are the

triggered, synchronous, and normal operation

modes. The triggered mode means that the

software or a hardware event starts the timer

and the user must end it programmatically.

These events could be as follows: another input

capture module saving its data, a comparator

returning true, an analog to digital converter

finishing its conversions, an output compare

module finishing one of its periods, or a timer

reaching its period. The synchronous operating

mode means that the timer resets at the same

time that another module begins on the PIC24.

The options for this mode are an output

compare module, an input capture module, or

a timer. The normal operating mode means

when you turn the module on it will count up

to its limit and reset only after it reaches that

value. To summarize these options, look at this

list:

Normal Operation Mode – The timer

operates as a standard timer that rolls

over when it reaches its max value.

Synchronous Operation Mode – The

timer synchronizes itself with another

timer so that both roll over

simultaneously

Software Triggered Operation Mode –

The timer starts when the user sets the

TRIGSTAT bit and ends when the user

clears the TRIGSTAT bit

Hardware/Software Triggered

Operation Mode – The timer starts

when a hardware event occurs or when

the user sets the TRIGSTAT bit. It ends

when the user clears the TRIGSTAT bit.

59

If you are using the Edge Detect Capture

mode, I suggest using the Software Triggered

Operation Mode since it will make your life

easier to measure the time between the two

edges. Once you have chosen an option from

above hop down to section that follows which

explains how to configure that mode.

Normal Operation Mode

In normal operation mode the timer is

always running and when an edge is detected

that matches your input capture mode the time

is written to the FIFO buffer. This mode can

work well for timing the length of a pulse or

the time between pulse but it requires more

thought in the interrupt handler to properly

find the correct time. To use this mode, add the

following lines of code:

ICXCON2.ICTRIG = 0;

ICXCON2.SYNCSEL = 0b00000;

Where X is replaced with the value of the input

capture module you’re configuring.

Synchronous Operation

Mode

In synchronous operation mode the

falling edge of a sync input signal resets the

timer. You can use this to ensure that the timer

of the input capture module counts in sync

with another timer or module. This can be

useful for if you want to only have the max

period of the input capture module be smaller

than normal and match another 16-bit timer

without prescaler. Similar to the normal

operation though it may be difficult to time a

pulse width or time how long before another

signal occurs since the timer is not reset upon

getting a signal. To set this mode use the

following lines of code:

ICXCON2.ICTRIG = 0;

ICXCON2.SYNCSEL = 0bYYYYY;

Where X is replaced with the value of the input

capture module you’re configuring. YYYYY is

replaced with one of the following options

which determines what the timer should sync

to:

10111 = Input Capture 4

10110 = Input Capture 3

10101 = Input Capture 2

10100 = Input Capture 1

01111 = Timer5

01110 = Timer4

01101 = Timer3

01100 = Timer2

01011 = Timer1

01010 = Input Capture 5

00101 = Output Compare 5

00100 = Output Compare 4

00011 = Output Compare 3

00010 = Output Compare 2

00001 = Output Compare 1

Software Triggered

Operation Mode

In software triggered operation mode,

the timer is held in reset till the TRIGSTAT bit

is set high by the programmer. Then, until the

TRIGSTAT bit is set low, the timer will count

up and roll over at its max period. This is very

useful because we can use the edge detect

input capture mode to set the TRIGSTAT bit at

the start of a pulse and turn it off at the end of

a pulse. This is very helpful for timing the

length of a pulse. For timing the amount of

time between pulses we could set the

TRIGSTAT bit when we get the first rising

edge and clear it when we get the second rising

edge. In both cases this will ensure our timer

only counts when we want to measure and not

while idle. To set this mode use the following

lines of code:

ICXCON2.ICTRIG = 1;

ICXCON2.SYNCSEL = 0b00000;

60

Where X is replaced with the value of the input

capture module you’re configuring.

Hardware/Software Triggered

Operation Mode

In hardware/software triggered

operation mode an external module event can

start the timer and have it run until the

programmer clears it. It also can function like

the normal software triggered operation mode.

This can be useful if you anticipate an input

signal at the end of a timer or other module

that you want to measure. To set this mode use

the following lines of code:

ICXCON2.ICTRIG = 1;

ICXCON2.SYNCSEL = 0bYYYYY;

Where X is replaced with the value of the input

capture module you’re configuring. YYYYY is

replaced with one of the following options

which determines what the timer should be

triggered by:

11100 = CTMU

11011 = A/D

11010 = Comparator 3

11001 = Comparator 2

11000 = Comparator 1

10111 = Input Capture 4

10110 = Input Capture 3

10101 = Input Capture 2

10100 = Input Capture 1

01111 = Timer5

01110 = Timer4

01101 = Timer3

01100 = Timer2

01011 = Timer1

01010 = Input Capture 5

00101 = Output Compare 5

00100 = Output Compare 4

00011 = Output Compare 3

00010 = Output Compare 2

00001 = Output Compare 1

Interrupt Rates

The input capture module can create

interrupts when it saves data to its buffer. If

you want it to save multiple measurements

before setting an interrupt use this line of code:

ICXCON1bits.ICI = 0bYY;

Where X is replaced with the number of the

input capture module you are configuring and

YY is replaced with one of these options:

11 = Interrupt on every fourth capture

event

10 = Interrupt on every third capture

event

01 = Interrupt on every second capture

event

00 = Interrupt on every capture event

It is important to note however that if you are

using edge detect mode these bits will not

affect the interrupt. In that mode it interrupts

on every edge it finds.

Getting Data from the FIFO

Buffer

Each input capture module has a FIFO

buffer with space for four measurements. Here

is a diagram to visualize it:

MOST RECENT DATA- FIRST READ

X

X

FURTHEST DATA – LAST READ

This buffer can present complications when

reading data because fi your module is

running at really fast speeds your data can get

buried or lost. One thing you can do before

making an important measurement is clear the

buffer. To do this you have to read all the data

in it. Writing a value to the buffer only adds

data to it. To tell when you the buffer is clear

there is a bit that the hardware sets high when

61

the buffer is not empty. To reset the buffer, use

the following code:

while(ICXCON1bits.ICBNE == 1){

int temp = ICXBUF;

}

Where X is replaced with the value of the input

capture module you are reading from. Each

read will clear one value from the buffer so the

while loop ensures enough reads are made to

clear it all. With careful programming you can

avoid getting improper data and only getting

relevant values.

Configuring an Input Capture

Interrupt

An input capture interrupt occurs after a

certain number of signals have been captured.

To configure it use the following lines of code:

_ICXIP = Y;

_ICXIF = 0;

_ICXIE = 1;

Where X represents the module which you are

configuring. Y is the priority of the interrupt

and needs a value between 1 and 7. 1 being

least important 7 being most important. This

only matters if interrupts will potentially occur

at the same time and one has to be done before

the other. I always set them as 4. The _ICXIF

command clears the interrupt flag. When we

handle the interrupt, we must clear the flag so

that the code can continue running normally

after the interrupt handler or we will be

infinitely stuck in the handler. The last line

enables the interrupt. You can enable and

disable the interrupt throughout your code

which can be useful if there are times where

you are not concerned with capturing the input

signals timing.

Handling an Input Capture

Interrupt

When the interrupt is called we need to

make a handler that clears the interrupt flag

and reacts to the interrupt. This can be done in

the main.c file or if you are following the good

practices guidelines in your interrupts header

file. The handler function is written as follows:

void __attribute__ ((interrupt, no_auto_psv))

_IC$Interrupt(void){

_IC$IF = 0;

/*your code here*/

}

Where the $ in the handler name is replaced

with the number of the module you are

configuring. The handler must be written with

that name in order for the PIC24 to properly

function. The interrupt flag line must also

always be at the top of the interrupt to clear the

flag.

62

Code Example – Configuring Input
Capture with an Input Capture Interrupt

/*

* File: main.c

* Author: Spencer Mosley

* Created on June 13, 2022

* Description: In this code I configure the input capture module on pin 13 to tell me the

* total period of a PWM signal being inputted on that pin. I use only rising edge

* detection and software triggered operation in order to get the proper data. I then

* configure the interrupt to occur every edge it detects and handle the interrupt in my

* code.

* This document is provided as a reference material

* Since I am trying to calculate the period of a PWM signal being inputted I

* should know the limits of my system. To do this I can look at the maximum

* resolution of the input capture module and my oscillator. I know that I cannot

* measure anything less than 6 oscillator cycles due to limitations on the

* interrupts so the fastest PWM frequency I could get would be FOSC/6 which in

* this case would be a max frequency of 41.67 kHz.

*/

#include "xc.h"

float frequency = 0.0; //global variable that stores the value of the incoming frequency

void __attribute__((interrupt, no_auto_psv)) _IC2Interrupt(void){

_IC2IF = 0; //clears interrupt flag

if(IC2CON2bits.TRIGSTAT == 0){ //At the start of a new PWM period

IC2CON2bits.TRIGSTAT = 1; //starts IC2 timer

while(IC2CON1bits.ICBNE == 1){ //clears IC2 buffer

int temp = IC2BUF;

}

}

else{

IC2CON2bits.TRIGSTAT = 0; //stops timer at start of next PWM period

frequency = (250000/IC2BUF) //gives me the input PWM frequency

}

}

#pragma config ICS = PGx3

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

_RCDIV = 0b100; //sets a 16 post scaler

/*

63

/*Reset All Registers We will be Using*/

IC2CON1 = 0;

IC2CON2 = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Configure Input Capture 2 Module Clock*/

IC2CON1bits.IC2TSEL = 0b111; //sets IC2 module clock to the system clock

/*Configure Input Capture 2 Module Capture Mode*/

IC2CON1bits.ICM = 0b011; //sets the IC2 module mode to capture rising edges

/*Configure Input Capture 2 Module in Software Triggered Operation Mode*/

IC2CON2bits.ICTRIG = 1; //sets the IC2 module to trigger mode

IC2CON2bits.SYNCSEL = 0b00000; //sets the IC2 module as software triggered

/*Set Input Capture 2 Module Interrupt Rate*/

IC2CON1bits.ICI = 0b00; //sets interrupt to occur on every capture event

/*Configure the Input Capture 2 Module Interrupt*/

_IC2IP = 4; //sets the IC2 interrupt priority to 4

_IC2IF = 0; //clears the IC2 interrupt flag

_IC2IE = 1; //enables the IC2 interrupt

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

64

Code Example – Configuring Input
Capture with a HC-SR04 Ultrasonic

Range Finder
/*

* File: main.c

* Author: Spencer Mosley

* Created on June 13, 2022

* Description: In this code I configure the input capture module on pin 13 to tell me the

* total length of the echo pulse from the HC-SR04 on that pin. I use the edge detect

* mode to find both the rising and falling edges. I then use the interrupt handler to stop

* and end the timer and calculate the distance it saw. Finally, I configure timer 2 so that

* it will send the 10uS output pulse on pin 12 for the HC-SR04 trigger input and wait .5

* sec between each trigger pulse

* This document is provided as a reference material

* Since I am trying to calculate the length of a pulse being inputted I should

* know the limits of my system. To do this I can look at the maximum length of

* the echo pulse output. From the datasheet I know that it can measure 4 meters

* and it says that uS/58 = cm or uS/148 = in. Therefore, 400 * 58 is the max pulse

* width in uS I can measure. This ends up being 23200uS. At a clock frequency of

* 8MHz we can measure increments of .25uS which means our 16-bit timer

* would need to count 92800 for the full distance possible. Since this is out of

* range we select a postscaler of 2 which gives us a max count of 46400 and a

* resolution of .5uS. That means our distances will have a very small error in

* them but it is a maximum of .5/58 = .0086cm which is negligible in our

* application of not touching a wall.

*/

#include "xc.h"

float distance = 0.0; //global variable that stores the value of the measured distance

void __attribute__((interrupt, no_auto_psv)) _IC2Interrupt(void){

_IC2IF = 0; //clears interrupt flag

if(IC2CON2bits.TRIGSTAT == 0){ //At the start of a new pulse

IC2CON2bits.TRIGSTAT = 1; //starts IC2 timer

while(IC2CON1bits.ICBNE == 1){ //clears IC2 buffer

int temp = IC2BUF;

}

}

else{

65

IC2CON2bits.TRIGSTAT = 0; //stops timer at end of pulse period

distance = IC2BUF/2000000; //converts timer value to seconds

distance*= 1000000; //converts to uS

distance/= 58; //converts to cm

IC2TMR = 0; resets timer for next pulse;

}

}

void __attribute__((interrupt, no_auto_psv)) _T2Interrupt(void){

_T2IF = 0; //clears interrupt flag

if(PR2 == 20){ //if sending the 10uS pulse

if(_LATB8 == 0){ //if pin 12 is off

_LATB8 = 1; //turns pin 12 on

}

else{ //if pulse is sent

T2CONbits.TON = 0; //turn timer 2 off

_LATB8 = 0; //turn off pin 12

T2CONbits.TCKPS = 0b10; //sets a timer prescaler value of 64

PR2 = 15625; //sets a period of half a second

TRM2 = 0; //resets timer 2 value

T2CONbits.TON = 1; //turns timer 2 back on

}

}

else if(PR2 == 15625){ //if we waited half a second

T2CONbits.TON = 0; //turn off timer 2

T2CONbits.TCKPS = 0b00; //sets a timer prescaler value of 1

PR2 = 20; //sets timer 2 period to 10uS

TMR2 = 0; //resets timer 2 value

T2CONbits.TON = 1; //turns timer 2 back on;

}

}

#pragma config ICS = PGx3 //configures programming and debugging pins

#pragma config FNOSC = FRCDIV //Sets clock to 8 MHZ oscillator with post scaler

int main(void) {

_RCDIV = 0b001; //sets a 2 post scaler

/*Pin 12 is RB8*/

/*Pin 13 is RB9*/

/*Reset All Registers We will be Using*/

IC2CON1 = 0;

IC2CON2 = 0;

T2CON = 0;

LATA = 0;

LATB = 0;

TRISA = 0;

66

TRISB = 0;

ANSA = 0;

ANSB = 0;

/*Configure Pin 12 as a Digital Output*/

_TRISB8 = 0; //sets pin 12 as a digital output

_LATB8 = 0; //sets pin 12 output to low

/*Configure Pin 13 as a Digital Input*/

_TRISB9 = 1; //sets pin 13 as a digital input

/*Configure Input Capture 2 Module Clock*/

IC2CON1bits.IC2TSEL = 0b111; //sets IC2 module clock to the system clock

/*Configure Input Capture 2 Module Capture Mode*/

IC2CON1bits.ICM = 0b001; //sets the IC2 module mode to capture every edge

/*Configure Input Capture 2 Module in Software Triggered Operation Mode*/

IC2CON2bits.ICTRIG = 1; //sets the IC2 module to trigger mode

IC2CON2bits.SYNCSEL = 0b00000; //sets the IC2 module as software triggered

/*Set Input Capture 2 Module Interrupt Rate*/

IC2CON1bits.ICI = 0b00; //sets interrupt to occur on every capture event

/*Configure the Input Capture 2 Module Interrupt*/

_IC2IP = 4; //sets the IC2 interrupt priority to 4

_IC2IF = 0; //clears the IC2 interrupt flag

_IC2IE = 1; //enables the IC2 interrupt

/*Configure Timer 2*/

T2CONbits.TCS = 0; //sets timer 2 clock source to system clock

T2CONbits.TCKPS = 0b00 //sets a prescaler value of 1

T2CONbits.T32 = 0; //unlinks timers 2 and 3

PR2 = 20 //sets the period to 10uS

TMR2 = 0; //resets the timer 2 value

/*Configure Timer 2 Interrupt*/

_T2IP = 4; //sets the timer 2 interrupt priority to 4

_T2IF = 0; //clears the timer 2 interrupt flag

_T2IE = 1; //enables the timer 2 interrupt

/*Turn on Timer 2*/

T2CONbits.TON = 1; //turns on timer 2

/*Let the Interrupts Control the Rest of the Code*/

while(1);

return 0;

}

